(本小題滿分15分)已知拋物線上的一點(m,1)到焦點的距離為.點是拋物線上任意一點(除去頂點),過點的直線和拋物線交于點,過點與的直線和拋物線交于點.分別以點,為切點的拋物線的切線交于點P′.

(I)求拋物線的方程;
(II)求證:點P′在y軸上.
(Ⅰ)   (Ⅱ)  見解析
:(Ⅰ)由題意得 ,
所以拋物線的方程為…………6分
(II)設 ,  因為
則以點為切點的拋物線的切線方程為
    
,所以……9分
同理可得以點為切點的拋物線的切線方程為
解得………………………………………11分
又過點的直線的斜率為
所以直線的方程為
 所以,即……13分
同理可得直線的方程為
     所以,即
,即P′得橫坐標為0, 所以點P′在y軸上……15分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量,動點到定直線的距離等于,并且滿足,其中為坐標原點,為非負實數(shù).
(1)求動點的軌跡方程
(2)若將曲線向左平移一個單位,得曲線,試判斷曲線為何種類型;
(3)若(2)中曲線為圓錐曲線,其離心率滿足,當是曲線的兩個焦點時,則圓錐曲線上恒存在點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,過定點作直線與拋物線)相交于兩點.
(I)若點是點關(guān)于坐標原點的對稱點,求面積的最小值;
(II)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,動圓與定圓B:x2+y2-4y-32=0內(nèi)切且過定圓內(nèi)的一個定點A(0,-2),求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設直線雙曲線,雙曲線的離心率為,交于兩點,直線軸交于點,且
(1)證明:;(2)求雙曲線的方程;(3)若點是雙曲線的右焦點,是雙曲線上兩點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與曲線交于不同的兩點,為坐標原點.
(Ⅰ)若,求證:曲線是一個圓;
(Ⅱ)若,當時,求曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程表示的曲線是(  。
A.焦點在軸上的橢圓B.焦點在軸上的雙曲線
C.焦點在軸上的橢圓D.焦點在軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線y2=4x,過點P(4,0)的直線與拋物線相交于A(x1,y1)、B(x2,y2)兩點,則y12+y22的最小值是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為拋物線的頂點,為這條拋物線互相垂直的兩條動弦.
求證:直線必過一定點.

查看答案和解析>>

同步練習冊答案