拋物線的頂點在原點,它的準線過橢圓:的一個焦點,并與橢圓的長軸垂直,已知拋物線與橢圓的一個交點為.

(1)求拋物線的方程和橢圓的方程;

(2)若雙曲線與橢圓共焦點,且以為漸近線,求雙曲線方程.

解:⑴設拋物線方程為y2 = 2px,∵在拋物線上,

= 2p×(−)得2p=−4,拋物線方程為y2= -4x            ………………………………3分

由題意得a2−b2=1                       ①

在橢圓上,∴    ②

由①②得a2=4  b2=3,即橢圓方程為             ………………………………8分

⑵橢圓的焦點(±1,0),設雙曲線方程為

∵漸近線方程為,∴ =      ①

a2+b2=1                             ②

由①②得a2 = ,b2 =,即雙曲線方程為     …………………………14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、拋物線的頂點在原點,對稱軸是坐標軸,且焦點在直線x-y+4=0上,則此拋物線方程為
y2=-16x或x2=16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是( 。
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)本題主要考查拋物線的標準方程、簡單的幾何性質等基礎知識,考查運算求解、推理論證的能力.
如圖,在平面直角坐標系xOy,拋物線的頂點在原點,焦點為F(1,0).過拋物線在x軸上方的不同兩點A、B,作拋物線的切線AC、BD,與x軸分別交于C、D兩點,且AC與BD交于點M,直線AD與直線BC交于點N.
(1)求拋物線的標準方程;
(2)求證:MN⊥x軸;
(3)若直線MN與x軸的交點恰為F(1,0),求證:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線的頂點在原點,對稱軸是坐標軸,且焦點在直線x-y+2=0上,則此拋物線方程為
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)實軸長為4
3
的橢圓的中心在原點,其焦點F1,,F(xiàn)2在x軸上.拋物線的頂點在原點O,對稱軸為y軸,兩曲線在第一象限內(nèi)相交于點A,且AF1⊥AF2,△AF1F2的面積為3.
(Ⅰ)求橢圓和拋物線的標準方程;
(Ⅱ)過點A作直線l分別與拋物線和橢圓交于B,C,若
AC
=2
AB
,求直線l的斜率k.

查看答案和解析>>

同步練習冊答案