已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍。

 

 

【答案】

解:(Ⅰ).

①當(dāng)時(shí),由于,故,

所以,的單調(diào)遞增區(qū)間為

②當(dāng)時(shí),由,得.

在區(qū)間上,,在區(qū)間,

所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(Ⅱ)由已知,轉(zhuǎn)化為.

由(Ⅱ)知,當(dāng)時(shí),上單調(diào)遞增,值域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012051818085509373665/SYS201205181810129531827910_DA.files/image019.png">,故不符合題意.

(或者舉出反例:存在,故不符合題意.)

當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,

的極大值即為最大值,,

所以

解得.

 

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=sin
1
2
x+
3
cos
1
2
x
,求:
(1)函數(shù)y的最大值,最小值及最小正周期;
(2)函數(shù)y的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)-3≤log
1
2
x≤-
1
2
,求函數(shù)y=log2
x
2
•log2
x
4
的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x•
x
求:f′(x)并f′(1),f′(
9
4
)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若對(duì)任意,函數(shù)上都有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高三上學(xué)期數(shù)學(xué)文卷 題型:解答題

 

(本小題滿分分)

已知函數(shù)

(1)求函數(shù)的最大值;

(2)在中,,角滿足,求的面積.

 

查看答案和解析>>

同步練習(xí)冊答案