【題目】已知拋物線C:的焦點(diǎn)為F,Q是拋物線上的一點(diǎn),.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)點(diǎn)作直線l與拋物線C交于M,N兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)(Ⅱ)存在,
【解析】
(Ⅰ)由題意可知,設(shè),由即可求出p的值,從而得到拋物線C的方程;
(Ⅱ)對(duì)直線l的斜率分情況討論,當(dāng)直線l的斜率不存在時(shí),由拋物線的對(duì)稱性可知x軸上任意一點(diǎn)A(不與點(diǎn)重合),都可使得x軸平分;
當(dāng)直線l的斜率存在時(shí),由題意可得,設(shè)直線l的方程為:與拋物線方程聯(lián)立,利用韋達(dá)定理代入得,解得,故點(diǎn).
解:(Ⅰ)由題意可知,,
∵點(diǎn)Q在物線C:上,∴設(shè),
,
∴,解得,
∴拋物線C的方程為:;
(Ⅱ)①當(dāng)直線l的斜率不存在時(shí),由拋物線的對(duì)稱性可知x軸上任意一點(diǎn)A(不與點(diǎn)重合),都可使得x軸平分;
②當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為:,
設(shè),,
聯(lián)立方程,
消去y得:,
,(*),
假設(shè)在x軸上是否存在一點(diǎn),使得x軸平分,
∴,
∴,
∴,
又,,
∴,
把(*)式代入上式化簡(jiǎn)得:,
∴,
∴點(diǎn),
綜上所求,在x軸上存在一點(diǎn),使得x軸平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),既存在極大值,又存在極小值.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),,分別為的極大值點(diǎn)和極小值點(diǎn).且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別為C、D,且過(guò)點(diǎn),P是橢圓上異于C、D的任意一點(diǎn),直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標(biāo)原點(diǎn),設(shè)直線CP交定直線x = m于點(diǎn)M,當(dāng)m為何值時(shí),為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上的最大值為,求實(shí)數(shù)的值;
(2)設(shè)函數(shù),當(dāng)時(shí),對(duì)任意的恒成立,求滿足條件的實(shí)數(shù)的最小整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),為函數(shù)的兩個(gè)極值點(diǎn),求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一、高二年級(jí)的全體學(xué)生都參加了體質(zhì)健康測(cè)試,測(cè)試成績(jī)滿分為分,規(guī)定測(cè)試成績(jī)?cè)?/span>之間為“體質(zhì)優(yōu)秀”,在之間為“體質(zhì)良好”,在之間為“體質(zhì)合格”,在之間為“體質(zhì)不合格”.現(xiàn)從這兩個(gè)年級(jí)中各隨機(jī)抽取名學(xué)生,測(cè)試成績(jī)?nèi)缦拢?/span>
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
高一年級(jí) | 60 | 85 | 80 | 65 | 90 | 91 | 75 |
高二年級(jí) | 79 | 85 | 91 | 75 | 60 |
其中是正整數(shù).
(1)若該校高一年級(jí)有學(xué)生,試估計(jì)高一年級(jí)“體質(zhì)優(yōu)秀”的學(xué)生人數(shù);
(2)若從高一年級(jí)抽取的名學(xué)生中隨機(jī)抽取人,記為抽取的人中為“體質(zhì)良好”的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望;
(3)設(shè)兩個(gè)年級(jí)被抽取學(xué)生的測(cè)試成績(jī)的平均數(shù)相等,當(dāng)高二年級(jí)被抽取學(xué)生的測(cè)試成績(jī)的方差最小時(shí),寫(xiě)出的值.(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出的值為( )
A.80B.192C.448D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),國(guó)家相關(guān)政策大力鼓勵(lì)創(chuàng)新創(chuàng)業(yè)種植業(yè)戶小李便是受益者之一,自從2017年畢業(yè)以來(lái),其通過(guò)自主創(chuàng)業(yè)而種植的某種農(nóng)產(chǎn)品廣受市場(chǎng)青睞,他的種植基地也相應(yīng)地新增加了一個(gè)平時(shí)小李便帶著部分員工往返于新舊基地之間進(jìn)行科學(xué)管理和經(jīng)驗(yàn)交流,新舊基地之間開(kāi)車單程所需時(shí)間為,由于不同時(shí)間段車流量的影響,現(xiàn)對(duì)50名員工往返新舊基地之間的用時(shí)情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(分鐘) | 30 | 35 | 40 | 45 | 50 |
頻數(shù)(人) | 10 | 20 | 10 | 5 | 5 |
(1)若有50名員工參與調(diào)查,現(xiàn)從單程時(shí)間在35分鐘,40分鐘,45分鐘的人員中按分層抽樣的方法抽取7人,再?gòu)倪@7人中隨機(jī)抽取3人進(jìn)行座談,用表示抽取的3人中時(shí)間在40分鐘的人數(shù),求的分布列和數(shù)學(xué)期望;
(2)某天,小李需要從舊基地駕車趕往新基地召開(kāi)一個(gè)20分鐘的緊急會(huì)議,結(jié)束后立即返回舊基地.(以50名員工往返新舊基地之間的用時(shí)的頻率作為用時(shí)發(fā)生的概率)
①求小李從離開(kāi)舊基地到返回舊基地共用時(shí)間不超過(guò)110分鐘的概率;
②若用隨機(jī)抽樣的方法從舊基地抽取8名骨干員工陪同小李前往新基地參加此次會(huì)議,其中有名員工從離開(kāi)舊基地到返回舊基地共用時(shí)間不超過(guò)110分鐘,求隨機(jī)變量的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù),函數(shù)
(1)當(dāng)函數(shù)在時(shí)為減函數(shù),求a的范圍;
(2)若a=e(e為自然對(duì)數(shù)的底數(shù));
①求函數(shù)g(x)的單調(diào)區(qū)間;
②證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com