【題目】已知等比數(shù)列{an}的前n項和為Sn=a2n+b,且a1=3.
(1)求a、b的值及數(shù)列{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Tn .
【答案】
(1)解:∵等比數(shù)列{an}的前n項和為Sn=a2n+b,且a1=3.
∴a1=2a+b=3,a2=4a+b﹣(2a+b)=2a,a3=(8a+b)﹣(4a+b)=4a,
∴公比q= =2.
∵ ,
∴a=3,b=﹣3.
∴an=32n﹣1
(2)bn= = ,
Tn= (1+ + +…+ )①
Tn= ( + +…+ + )②
①﹣②得: Tn= (1+ + +…+ ﹣ )= [ ]
= (2﹣ ﹣ )= (1﹣ ﹣ ),
∴Tn= (1﹣ ﹣ ).
【解析】(1)由等比數(shù)列{an}的前n項和為Sn=a2n+b可分別求出a1,a2,a3。因為它們的公比相同即可求出a和b的值。
(2)由(1)問可知bn代入Tn,用錯位相減法即可求出。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個四棱錐的正視圖和側(cè)視圖為兩個完全相同的等腰直角三角形(如圖示),腰長為1,則該四棱錐的體積為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時,輸出的S的值為m,當(dāng)箭頭a指向②處時,輸出的S的值為n,則m+n=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 (a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標(biāo)原點.
(1)求 的值;
(2)若橢圓的離心率e滿足 ≤e≤ ,求橢圓長軸的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的兩條相鄰對稱軸間的距離為 ,把f(x)的圖象向右平移 個單位得到函數(shù)g(x)的圖象,且g(x)為偶函數(shù),則f(x)的單調(diào)遞增區(qū)間為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝超市舉辦了一次有獎促銷活動,顧客消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性抽出3個小球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球則打6折,若摸到1個紅球,則打7折;若沒有摸到紅球,則不打折;
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回的摸取,連續(xù)3次,每摸到1個紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,則該顧客選擇哪種抽獎方案更合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面α過正方體ABCD﹣A1B1C1D1的面對角線 ,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,則∠A1AS的正切值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com