【題目】物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:

定價x(元/kg)

10

20

30

40

50

60

年銷量y(kg)

1150

643

424

262

165

86

z=21ny

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù):,

,

(Ⅰ)根據(jù)散點圖判斷,y與x和z與x哪一對具有的線性相關(guān)性較強(給出判斷即可,不必說明理由)?

(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為,

【答案】(1)z與x具有的線性相關(guān)性較強;(2)

【解析】

(1)根據(jù)散點圖判斷即可;(2)分別求出,從而求出回歸方程

(1)由散點圖可知, z與具有的線性相關(guān)性較強.

(2)由題設(shè),

所以,所以,又,

故y關(guān)于的回歸方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學生每天放學后的自學時間情況,在本市的所有中學生中隨機抽取了120名學生進行調(diào)查,現(xiàn)將日均自學時間小于1小時的學生稱為“自學不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計后,得到如下列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為“自學不足”的概率為

非自學不足

自學不足

合計

配有智能手機

30

沒有智能手機

10

合計

請完成上面的列聯(lián)表;

根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“自學不足”與“配有智能手機”有關(guān)?

附表及公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .

(Ⅰ)寫出的值,并用列舉法寫出集合;

(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;

(Ⅲ)有多少個集合對,滿足,且?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求曲線處的切線方程;

2R上的單調(diào)遞增函數(shù),求a的取值范圍;

3若函數(shù)對任意的實數(shù),存在唯一的實數(shù),使得成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對點的直線l分別交兩點.

(1)設(shè)的面積為,求直線l的方程;

(2)最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P是拋物線上一動點,則點P到點的距離與P到直線的距離和的最小值是(

A.B.C.3D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),為正項數(shù)列的前n項和,且.數(shù)列滿足:,.

1)求數(shù)列的通項公式;

2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)命題p:函數(shù)fx=lgax2-x+16a)的定義域為R;命題q:不等式3x-9xa對任意xR恒成立.

(1)如果p是真命題,求實數(shù)a的取值范圍;

(2)如果命題pq為真命題且pq為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形中,,點的中點,將沿折起到的位置,使二面角是直二面角.

1證明: ;

2求二面角的余弦值.

查看答案和解析>>

同步練習冊答案