8.橢圓7x2+3y2=21上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為2$\sqrt{7}$.

分析 將橢圓方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求得a,b的值,由橢圓的定義可知:橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和2a=2$\sqrt{7}$.

解答 解:由題意可知:橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{7}=1$,
焦點(diǎn)在y軸上,a2=7,b2=3,
由c2=a2-b2=4,c=2,
∴由橢圓的定義可知:橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和2a=2$\sqrt{7}$,
故答案為:2$\sqrt{7}$.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,橢圓定義的應(yīng)用,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.拋物線x=2y2的焦點(diǎn)坐標(biāo)是( 。
A.(1,0)B.($\frac{1}{2}$,0)C.($\frac{1}{8}$,0)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.直線y=2b與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左支、右支分別交于B,C兩點(diǎn),A為右頂點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOC=∠BOC,則該雙曲線的離心率為$\frac{\sqrt{19}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.橢圓7x2+3y2=21上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,a3=6且Sn+1=3Sn,則a1+a5等于( 。
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題“?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$<1”的否定是( 。
A.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$>1B.?x0∈R,x02+sinx0+e${\;}^{{x}_{0}}$≥1
C.?x∈R,x2+sinx+ex>1D.?x∈R,x2+sinx+ex≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,已知四邊形ABCD是圓內(nèi)接四邊形,且∠BCD=120°,AD=2,AB=BC=1,現(xiàn)有以下結(jié)論:①B,D兩點(diǎn)間的距離為$\sqrt{3}$;②AD是該圓的一條直徑;③CD=$\frac{\sqrt{3}}{2}$;④四邊形ABCD的面積S=$\frac{3\sqrt{3}}{4}$.其中正確結(jié)論的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,在棱長(zhǎng)均為2的正三棱柱ABC-A1B1C1中,點(diǎn)M是側(cè)棱AA1的中點(diǎn),點(diǎn)P是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1P∥平面BCM,則點(diǎn)P的軌跡的長(zhǎng)度為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)$f(x)=\frac{x}{x+2}(x>0)$,數(shù)列{an}滿足${a_1}=\frac{a}{a+2}$(a>0),an+1=f(an)(n∈N*
(1)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案