某公司生產(chǎn)一種產(chǎn)品的固定成本是10000元,每生產(chǎn)一件產(chǎn)品需要另外投入80元,又知市場對(duì)這種產(chǎn)品的年需求量為800件,且銷售收入函數(shù),其中t是產(chǎn)品售出的數(shù)量,且(利潤=銷售收入成本).

(1)若x為年產(chǎn)量,y表示利潤,求的解析式;

(2)當(dāng)年產(chǎn)量為多少時(shí),求工廠年利潤的最大值?

 

【答案】

解:(1)

(2)當(dāng)x=460時(shí),最大利潤為201600元

【解析】本試題主要是考查了函數(shù)在實(shí)際生活中的運(yùn)用。

(1)對(duì)于x進(jìn)行分類討論得到函數(shù)關(guān)系式,進(jìn)而得到解析式。

(2)在第一問的基礎(chǔ)上,借助于函數(shù)單調(diào)性,得到最值。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品的固定成本為0.5萬元,但每生產(chǎn)100件需再增加成本0.25萬元,市場對(duì)此產(chǎn)品的年需求量為500件,年銷售收入(單位:萬元)為R(t)=5t-
t22
(0≤t≤5),其中t為產(chǎn)品售出的數(shù)量(單位:百件).
(1)把年利潤表示為年產(chǎn)量x(百件)(x≥0)的函數(shù)f(x);
(2)當(dāng)年產(chǎn)量為多少件時(shí),公司可獲得最大年利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)一種產(chǎn)品的固定成本是10000元,每生產(chǎn)一件產(chǎn)品需要另外投入80元,又知市場對(duì)這種產(chǎn)品的年需求量為800件,且銷售收入函數(shù)g(t)=-t2+1000t,其中t是產(chǎn)品售出的數(shù)量,且0≤t≤800(利潤=銷售收入-成本).
(1)若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式;
(2)當(dāng)年產(chǎn)量為多少時(shí),求工廠年利潤的最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省合肥32中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

某公司生產(chǎn)一種產(chǎn)品的固定成本為0.5萬元,但每生產(chǎn)100件需再增加成本0.25萬元,市場對(duì)此產(chǎn)品的年需求量為500件,年銷售收入(單位:萬元)為R(t)=5t-(0≤t≤5),其中t為產(chǎn)品售出的數(shù)量(單位:百件).
(1)把年利潤表示為年產(chǎn)量x(百件)(x≥0)的函數(shù)f(x);
(2)當(dāng)年產(chǎn)量為多少件時(shí),公司可獲得最大年利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):2 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 質(zhì)量檢測(1)(解析版) 題型:解答題

某公司生產(chǎn)一種產(chǎn)品的固定成本為0.5萬元,但每生產(chǎn)100件需再增加成本0.25萬元,市場對(duì)此產(chǎn)品的年需求量為500件,年銷售收入(單位:萬元)為R(t)=5t-(0≤t≤5),其中t為產(chǎn)品售出的數(shù)量(單位:百件).
(1)把年利潤表示為年產(chǎn)量x(百件)(x≥0)的函數(shù)f(x);
(2)當(dāng)年產(chǎn)量為多少件時(shí),公司可獲得最大年利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省合肥市高三第一次月考文科數(shù)學(xué)試卷 題型:解答題

(14分)某公司生產(chǎn)一種產(chǎn)品的固定成本為0.5萬元,但每生產(chǎn)100件需再增加成本0.25萬元,市場對(duì)此產(chǎn)品的年需求量為500件,年銷售收入(單位:萬元)為R(t)=5t-(0≤t≤5),其中t為產(chǎn)品售出的數(shù)量(單位:百件).

(1)把年利潤表示為年產(chǎn)量x(百件)(x≥0)的函數(shù)f(x);

(2)當(dāng)年產(chǎn)量為多少件時(shí),公司可獲得最大年利潤?

 

查看答案和解析>>

同步練習(xí)冊答案