已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(xiàn)(x)=

(1)若f(-1)=0,且函數(shù)f(x) ≥0的對(duì)任意x屬于一切實(shí)數(shù)成立,求F(x)的表達(dá)式;

(2)在 (1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;

 

【答案】

(1) ,  (2) ,

【解析】

試題分析:(1)解析式的求法,可得a與b的關(guān)系,再由函數(shù)的值域求出各自的值,最后得出解析式。

(2)由(1)已知的解析式,進(jìn)一步表示出出的解析式,然后得出二次函數(shù)的對(duì)稱(chēng)軸,利用在閉區(qū)間上的單調(diào)性得出對(duì)稱(chēng)軸的范圍,進(jìn)而求出實(shí)數(shù)k的取值范圍。

試題解析:(1)

,的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041904493381258576/SYS201404190450117656504843_DA.files/image009.png">,

(2)

對(duì)稱(chēng)軸,當(dāng)

時(shí),是單調(diào)函數(shù)。

考點(diǎn):求函數(shù)的解析式,恒成立問(wèn)題,單調(diào)性求參量。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省南昌市高一5月聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.

(1)求函數(shù)f(x)的解析式;

(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧盤(pán)錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿(mǎn)足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省萊蕪市高三上學(xué)期10月測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿(mǎn)分l2分)

已知函數(shù)f(x)=a

 

(1)求證:函數(shù)yf(x)在(0,+∞)上是增函數(shù);

 

(2)f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題

( (本小題滿(mǎn)分13分)

已知函數(shù)f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)設(shè)a<0時(shí),對(duì)任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一期末考試文科數(shù)學(xué) 題型:解答題

(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函數(shù)的定義域   (2)討論函數(shù)f(X)的單調(diào)性

 

查看答案和解析>>

同步練習(xí)冊(cè)答案