設(shè)直線l:y=x+m,雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
,雙曲線的離心率為
3
,l與E交于P,Q兩點(diǎn),直線l與y軸交于點(diǎn)R,且
OP
OQ
=-3,
PR
=3
RQ
.

(1)證明:4a2=m2+3;
(2)求雙曲線E的方程;
(3)若點(diǎn)F是雙曲線E的右焦點(diǎn),M,N是雙曲線上兩點(diǎn),且
MF
FN
,求實(shí)數(shù)λ的取值范圍.
(1)∵雙曲線的離心率為
3
,
e=
c
a
=
3
,從而b2=2a2
雙曲線的方程可化為2x2-y2=2a2
設(shè)P(x1,y1),Q(x2,y2
y=x+m
2x2-y2=2a2

得:x2-2mx-m2-2a2=0
則有x1+x2=2m,x1•x2=-m2-2a2
從而y1+y2=4m,y1y2=2m2-2a2
OP
OQ
=-3,∴x1x2+y1y2=-3

則-m2-2a2+2m2-2a2=-3,即4a2=m2+3;
(2)∵R(0,m),
PR
=3
RQ
,
∴(-x1,m-y1)=3(x2,y2-m)
-x1=3x2
m-y1=3(y2-m)
,
-x1=3x2
x1+x2=2m
x1x2=-m2-2a2
得m2=a2
m2=a2
4a2=m2+3
得a2=1則b2=2
故雙曲線的方程為x2-
y2
2
=1
;
(3)易知F(
3
,0)
,設(shè)M(x1,y1),N(x2,y2).
MF
FN
得:
3
-x1=λ(x2-
3
)
-y1y2

設(shè)直線MN的方程為x=ty+
3

x=ty+
3
2x2-y2=2
得:(2t2-1)y2+4
3
ty+4=0

y1+y2=-
4
3
t
2t2-1
y1y2=
4
2t2-1
,
消去y1,y2得:
(1-λ)2
=
2t2-1
12t2

2t2-1
12t2
=
1
6
-
1
12t2
1
6
,
(1-λ)2
1
6
,
解得λ>-2+
3
λ<-2-
3

當(dāng)t=0時(shí),可求出λ=1.
當(dāng)直線MN與x軸重合時(shí),
可求出λ=-2+
3
λ=-2-
3

故λ的取值范圍是(-∞,-2-
3
]∪[-2+
3
,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l:y=x+m,雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)
,雙曲線的離心率為
3
,l與E交于P,Q兩點(diǎn),直線l與y軸交于點(diǎn)R,且
OP
OQ
=-3,
PR
=3
RQ
.

(1)證明:4a2=m2+3;
(2)求雙曲線E的方程;
(3)若點(diǎn)F是雙曲線E的右焦點(diǎn),M,N是雙曲線上兩點(diǎn),且
MF
FN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)R(-3,0),點(diǎn)P在x軸的正半軸上,點(diǎn)Q在y軸上,點(diǎn)M在直線PQ上,且滿足2
QM
+3
MP
=
0
PM
QM
=1.
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)直線l:y=x+m(m∈R)與曲線C恒有公共點(diǎn)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩焦點(diǎn)為F1(-
3
,0),F(xiàn)2
3
,0),離心率e=
3
2

(1)求此橢圓的方程;
(2)設(shè)直線l:y=x+m,若l與此橢圓相交于P,Q兩點(diǎn),且|PQ|等于橢圓的短軸長(zhǎng),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山東)如圖,橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求
|PQ|
|ST|
的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,點(diǎn)B與點(diǎn)A(0,2)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),AP⊥BP.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=x+m與曲線C交于M、N兩點(diǎn),
。┤
OM
ON
=-1
,求實(shí)數(shù)m取值;
ⅱ)若點(diǎn)A在以線段MN為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案