集合A={x|x2ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求當(dāng)a取什么實(shí)數(shù)時(shí),AB AC=同時(shí)成立.


解析:

log2(x2-5x+8)=1,由此得x2-5x+8=2,∴B={2,3}x2+2x-8=0,∴C={2,-4},又AC=,∴2和-4都不是關(guān)于x的方程x2ax+a2-19=0的解,而AB ,即AB,

∴3是關(guān)于x的方程x2ax+a2-19=0的解,∴可得a=5或a=-2.

當(dāng)a=5時(shí),得A={2,3},∴AC={2},這與AC=不符合,所以a=5(舍去);當(dāng)a=-2時(shí),可以求得A={3,-5},符合AC=,AB ,∴a=-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、若集合A={x|x2-x+1≥0},B={x|x2-5x+4≤0},則A∩B=
{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2=4},B={x|ax=1},若B⊆A,則實(shí)數(shù)a的取值集合為
{0,-2,2}
{0,-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|x2+ax+1=0,x∈R},B={1,2},且A=B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案