【題目】同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:
二者點數(shù)相同的概率;
兩數(shù)之積為奇數(shù)的概率;
二者的數(shù)字之和不超過5的概率.
【答案】(1)(2)(3)
【解析】
把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,利用列舉法求出事件A中包含6個基本事件,由此能求出二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,利用列舉法求出事件B中含有9個基本事件,由此能求出兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,利用列舉法求出事件C中包含的基本事件有10個,由此能求出二者的數(shù)字之和不超過5的概率.
解:把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),
記事件A表示“二者點數(shù)相同”,
則事件A中包含6個基本事件,分別為:,,,,,,
二者點數(shù)相同的概率.
記事件B表示“兩數(shù)之積為奇數(shù)”,
則事件B中含有9個基本事件,分別為:
,,,,,,,,,
兩數(shù)之積為奇數(shù)的概率.
記事件C表示“二者的數(shù)字之和不超過5”,
由事件C中包含的基本事件有10個,分別為:
,,,,,,,,,,
二者的數(shù)字之和不超過5的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系xoy中,曲線: (:y=kx (x),以坐標(biāo)原點為極點,x軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為:.
(1)求的直角坐標(biāo)方程。
(2)曲線交于點B,求A、B兩點的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù)中,f (x)與g (x)表示同一個函數(shù)的是( )
A.f (x) = |x|,g(x) =B.f (x) = 2x,g (x) =
C.f (x) = x,g (x) =D.f (x) = x,g (x) =
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線C:,給出下列五個命題:
①曲線C關(guān)于直線y=x對稱;
②曲線C關(guān)于點對稱;
③曲線C上的點到原點距離的最小值為;
④當(dāng)時,曲線C上所有點處的切線斜率為負(fù)數(shù);
⑤曲線C與兩坐標(biāo)軸所圍成圖形的面積是.
上述命題中,為真命題的是_____.(將所有真命題的編號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;
(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于和,設(shè)線段的長分別為,證明是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,為上的動點.
(Ⅰ)當(dāng)為的中點時,在棱上是否存在點,使得?說明理由;
(Ⅱ)的面積最小時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()與拋物線()共交點,拋物線上的點到軸的距離等于,且橢圓與拋物線的交點滿足.
(1)求拋物線的方程和橢圓的方程;
(2)國拋物線上的點做拋物線的切線交橢圓于兩點,設(shè)線段的中點為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com