在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(-2,0),B(2,0),點(diǎn)P為動(dòng)點(diǎn),且直線AP與直線BP的斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)D(1,0)的直線l交軌跡C于不同的兩點(diǎn)M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

(1)=1(x≠±2)(2)x=1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E=1(a>b>0)的右焦點(diǎn)為F,過(guò)原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2y2的切線L與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),OP(O為坐標(biāo)原點(diǎn))與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的焦距為,且過(guò)點(diǎn)(),右焦點(diǎn)為.設(shè)上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為,線段的中垂線交橢圓兩點(diǎn).

(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為,設(shè)左頂點(diǎn)為A,上頂點(diǎn)為B且,如圖.

(1)求橢圓的方程;
(2)若,過(guò)的直線交橢圓于兩點(diǎn),試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線C:的離心率為,左頂點(diǎn)為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)在圓上,求m的值和線段AB的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個(gè)焦點(diǎn),M為橢圓上任意一點(diǎn),且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點(diǎn)F2(c,0)到直線lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)AB,且,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是,又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線l1:4x-3y+6=0和直線l2x=- (p>2).若拋物線Cy2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點(diǎn)M處的切線l與直線l2交于點(diǎn)N,試問(wèn)在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案