函數(shù)f(x)=3x(x≤2)的反函數(shù)的定義域是


  1. A.
    (-∞,9}
  2. B.
    [9,+∞)
  3. C.
    (0,9]
  4. D.
    (0,+∞)
C
分析:由指對(duì)數(shù)運(yùn)算法則,算出函數(shù)f(x)的反函數(shù)為f-1(x)=log3x,再由原函數(shù)的定義域建立不等式,即可解出反函數(shù)的定義域.
解答:令y=3x(x≤2),則可得x=log3y,
∴函數(shù)f(x)=3x(x≤2)的反函數(shù)為f-1(x)=log3x
∵函數(shù)f(x)的定義域?yàn)閧x|x≤2}
∴解log3x≤2,得0<x<9
即反函數(shù)的定義域?yàn)椋?,9)
故選:C
點(diǎn)評(píng):本題求一個(gè)指數(shù)函數(shù)的反函數(shù)的定義域,著重考查了反函數(shù)的求法和定義域、值域等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

27、對(duì)于函數(shù)f(x),若f(x0)=x0,則稱(chēng)x0為f(x)的“不動(dòng)點(diǎn)”;若f[f(x0)]=x0,則稱(chēng)x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=3x+4求集合A和B;
(2)求證:A⊆B;
(3)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明函數(shù)f(x)=
3x+1
在[3,5]上單調(diào)遞減,并求函數(shù)在[3,5]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x,x≤0
log3x,x>0
,則f(f(-
1
2
))=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿(mǎn)足f(
s+1
s
)=
t-1
t
;
(3)設(shè)x1=
11
17
,xn+1=f(xn),n=1,2,….問(wèn):數(shù)列{
1
xn-1
}是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項(xiàng)的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x
+1,則
lim
△x→0
f(1-△x)-f(1)
△x
的值為( 。
A、-
1
3
B、
1
3
C、
2
3
D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案