【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進行調(diào)查,在高三的全體1000名學(xué)生中隨機抽取了100名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學(xué)習(xí)成績有關(guān)系?
(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進一步調(diào)查他們良好的護眼習(xí)慣,并且在這9人中任取3人,記名次在1~50的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:
【答案】(1)820人;(2)在犯錯誤的概率不超過0.05的前提下認為視力與學(xué)習(xí)成績有關(guān)系;(3)分布列見解析,期望為1.
【解析】試題分析:(Ⅰ)由頻率分布直方圖可知,當(dāng)前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列時,以下的頻率為,故全年級視力在以下的人數(shù)約為;
(Ⅱ)由,因此在犯錯誤的概率不超過的前提下認為視力與學(xué)習(xí)成績有關(guān)系;
(Ⅲ)依題可取,,,,則,,
,,
所以的數(shù)學(xué)期望.
試題解析:(Ⅰ)設(shè)各組的頻率為,
依題意,前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,故
,,
所以由得,
所以視力在5.0以下的頻率為1-0.17=0.83,
故全年級視力在5.0以下的人數(shù)約為
(Ⅱ)
因此在犯錯誤的概率不超過0.05的前提下認為視力與學(xué)習(xí)成績有關(guān)系.
(Ⅲ)依題意9人中年級名次在1~50名和951~1000名分別有3人和6人,
可取0,1,2,3,
,,
,
的分布列為
X | 0 | 1 | 2 | 3 |
P |
的數(shù)學(xué)期望
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D是以AB為直徑的圓上兩點,AB=2AD=2,AC=BC,F 是AB上一點,且AF=AB,將圓沿直徑AB折起,使點C在平面ABD的射影E在BD上,已知CE=.
(1)求證:AD⊥平面BCE;
(2)求證:AD∥平面CEF;
(3)求三棱錐A﹣CFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷所得命題的真假:
(1)二次函數(shù)的圖像的頂點坐標(biāo)是;
(2)正數(shù)的立方根都是正數(shù);
(3)存在一個最大的內(nèi)角小于60°的三角形;
(4)對任意實數(shù)t,點都在一次函數(shù)的圖像上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?
(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項活動,問2名學(xué)生中有1名男生的概率是多少?
(3)學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?請說明理由.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為,準(zhǔn)線為,是拋物線上的兩個動點,且滿足.設(shè)線段的中點在上的投影為,則的最大值是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論,其中正確的結(jié)論是( )
A.f(x)是偶函數(shù)B.f(x)在區(qū)間(,)單調(diào)遞增
C.f(x)在有4個零點D.f(x)的最大值為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點作拋物線的兩條切線,切點分別為,,,分別交軸于,兩點,為坐標(biāo)原點,則與的面積之比為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com