【題目】已知函數(shù)的定義域是A,值域是;的定義域是C,值域是,且實(shí)數(shù)滿(mǎn)足.下列命題中,正確的有( )
A.如果對(duì)任意,存在,使得,那么;
B.如果對(duì)任意,任意,使得,那么;
C.如果存在,存在,使得,那么;
D.如果存在,任意,使得,那么.
【答案】ABD
【解析】
根據(jù)連個(gè)函數(shù)定義域和值域之間的關(guān)系,逐項(xiàng)判斷,即可求得答案.
對(duì)于A, 如果對(duì)任意,存在,使得,可得,故A正確;
對(duì)于B, 如果對(duì)任意,任意,使得,即:的值域的最小值大于值域的最大值,可得,故B正確;
對(duì)于C,取的值域,值域,此時(shí)滿(mǎn)足存在,存在,使得,但,故C錯(cuò)誤;
對(duì)于D, 如果存在,任意,使得,即的值域的最大值大于值域的最小值,故D正確.
綜上所述,正確的是ABD.
故選: ABD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為直線(xiàn)上的動(dòng)點(diǎn),,過(guò)作直線(xiàn)的垂線(xiàn),交的中垂線(xiàn)于點(diǎn),記點(diǎn)的軌跡為.
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)若直線(xiàn)與圓相切于點(diǎn),與曲線(xiàn)交于,兩點(diǎn),且為線(xiàn)段的中點(diǎn),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與的圖象在點(diǎn)處有相同的切線(xiàn).
(Ⅰ)若函數(shù)與的圖象有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知平面,,分別是,的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)若,,求直線(xiàn)與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市公租房的房源位于四個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請(qǐng)人中:
(1)求恰有1人申請(qǐng)片區(qū)房源的概率;
(2)用表示選擇片區(qū)的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在矩形中,,沿直線(xiàn)BD將△ABD折成,使得點(diǎn)在平面上的射影在內(nèi)(不含邊界),設(shè)二面角的大小為,直線(xiàn) ,與平面中所成的角分別為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地棚戶(hù)區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶(hù)區(qū)建筑用地,測(cè)量可知邊界萬(wàn)米,萬(wàn)米,萬(wàn)米.
(1)請(qǐng)計(jì)算原棚戶(hù)區(qū)建筑用地的面積及的長(zhǎng);
(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶(hù)區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶(hù)區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:.
(1)求圓的圓心C的坐標(biāo)和半徑長(zhǎng);
(2)直線(xiàn)l經(jīng)過(guò)坐標(biāo)原點(diǎn)且不與y軸重合,l與圓C相交于兩點(diǎn),求證:為定值;
(3)斜率為1的直線(xiàn)m與圓C相交于D、E兩點(diǎn),求直線(xiàn)m的方程,使的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面.,, 且點(diǎn)為的中點(diǎn).
(1) 求證:平面;
(2) 求與平面所成角的正弦值;
(3) 在線(xiàn)段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com