6.${({x^3}-\frac{1}{x^2})^5}$展開(kāi)式中的常數(shù)項(xiàng)是-10.

分析 在二項(xiàng)展開(kāi)式的通項(xiàng)公式:Tr+1=${C}_{5}^{r}$•x15-3r•(-1)r•x-2r=(-1)r•${C}_{5}^{r}$•x15-5r,令x的冪指數(shù)等于0,即15-5r=0,求出r的值,即常數(shù)項(xiàng)-${C}_{5}^{r}$=-10.

解答 解:由題意可知:${({x^3}-\frac{1}{x^2})^5}$的二項(xiàng)展開(kāi)式的通項(xiàng)公式為:Tr+1=${C}_{5}^{r}$•x15-3r•(-1)r•x-2r=(-1)r•${C}_{5}^{r}$•x15-5r
令15-5r=0,解得r=3,
故展開(kāi)式中的常數(shù)項(xiàng)為-${C}_{5}^{r}$=-10,
故答案為:-10.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{3x}{{\sqrt{-1-x}}}$,其定義域?yàn)锳.
(1)求A;
(2)求f(-2)的值;
(3)判斷0與A的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.定義新運(yùn)算a&b為:a&b=$\left\{\begin{array}{l}{a}&{a≤b}\\&{a>b}\end{array}$,則函數(shù)f(x)=sinx&cosx 的值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中點(diǎn),且PA=PB=AB=2,BC=$\sqrt{2}$.
(1)求證:PC∥平面EBD;
(2)求三棱錐A-PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知空間兩點(diǎn)的坐標(biāo)分別為A(1,0,-3),B(4,-2,1),則|AB|=$\sqrt{29}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如果f[f(x)]=4x+6,且f(x)是遞增函數(shù),則一次函數(shù)f(x)=2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=x-alnx,$g(x)=-\frac{a+1}{x}$
(1)若a=1,求函數(shù)f(x)在x=e處的切線(xiàn)方程
(2)設(shè)函數(shù)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間
(3)若存在x0∈[1,e],(e=2.718…為自然對(duì)數(shù)的底數(shù)),使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,橢圓C:$\frac{{x}^{2}}{4}$+y2=1,左右焦點(diǎn)分別記作F1,F(xiàn)2,過(guò)F1,F(xiàn)2分別作直線(xiàn)l1,l2交橢圓AB,CD,且l1∥l2
(1)當(dāng)直線(xiàn)l1的斜率k1與直線(xiàn)BC的斜率k2都存在時(shí),求證:k1•k2為定值;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1)(a≥0).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若方程f(x)-t=0在[-$\frac{1}{2}$,1]上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(3)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

同步練習(xí)冊(cè)答案