已知點M是直線3x+4y-2=0上的動點,點N為圓(x+1)2+(y+1)2=1上的動點,則|MN|的最小值是
4
5
4
5
分析:求出圓心到直線的距離減去半徑即可得到|MN|的最小值.
解答:解:圓心(-1,-1)到點M的距離的最小值為點(-1,-1)到直線的距離d=
|-3-4-2|
5
=
9
5
,
故點N到點M的距離的最小值為d-1=
4
5
.如圖:
故答案為:
4
5
點評:本題考查直線與圓的位置關系,點到直線的距離公式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點M是直線l:2x-y-4=0與x軸的交點,將直線l繞點M逆時針方向旋轉45°,得到的直線方程是( 。
A、x+y-3=0B、3x+y-6=0C、3x-y+6=0D、x-3y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M是直線3x+4y-2=0上的動點,點N為圓(x+1)2+(y+1)2=1上的動點,則|MN|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M是直線l:2x-y-4=0與x軸的交點,把直線l繞點M按逆時針方向旋轉45°,得到的直線方程是
3x+y-6=0
3x+y-6=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M是直線l∶2x-y-4=0與x軸的交點,把直線l繞點M按逆時針方向旋轉45°,則得到的直線方程是(    )

A.3x+y-6=0       B.3x-y+6=0            C.x+y-2=0             D.x-3y-2=0

查看答案和解析>>

同步練習冊答案