15.已知拋物線y=-4x2,則它的準(zhǔn)線方程為(  )
A.y=$\frac{1}{16}$B.y=-$\frac{1}{16}$C.x=2D.x=-2

分析 利用拋物線方程化簡(jiǎn)為標(biāo)準(zhǔn)方程,然后求解準(zhǔn)線方程即可.

解答 解:拋物線y=-4x2,化為:x2=-$\frac{1}{4}$y,
所以拋物線y=-4x2,則它的準(zhǔn)線方程為:y=$\frac{1}{16}$.
故選:A.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x,y滿足約束條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ 3x-y-3≤0\end{array}\right.$,目標(biāo)函數(shù)z=x2+y2的最小值為(  )
A.13B.$\sqrt{13}$C.$\frac{4}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.下列函數(shù)為奇函數(shù)的是②③④
①f(x)=x2-|x|+1 x∈[-1,4];
②f(x)=ln$\frac{2-x}{2+x}$;
③f(x)=$\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$ (a>0,且a≠1);
④f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x>0}\\{0,x=0}\\{-{x}^{2}-2,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f'(x),對(duì)任意的實(shí)數(shù)x都有f(x)=4x2-f(-x),當(dāng)x∈(-∞,0)時(shí),$f'(x)+\frac{1}{2}<4x$.若f(m+1)≤f(-m)+4m+2,則實(shí)數(shù)m的取值范圍是(  )
A.$[{-\frac{1}{2},+∞})$B.$[{-\frac{3}{2},+∞})$C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:對(duì)任意x∈R,有cosx≤1,則( 。
A.¬p:存在x∈R,使cosx>1B.¬p:對(duì)任意x∈R,有cosx>1
C.¬p:存在x∈R,使cosx≥1D.¬p:對(duì)任意x∈R,有cosx≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=4x3-ax2-2bx+3的兩個(gè)極值點(diǎn)為1,-$\frac{2}{3}$,則ab的值為(  )
A.8B.6C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.過(guò)點(diǎn)(2,1)作圓(x-1)2+(y+2)2=25的弦,其中最短的弦所在的直線方程為(  )
A.3x-y-5=0B.x+3y-1=0C.2x-y-3=0D.x+3y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列函數(shù)的導(dǎo)數(shù).
(1)y=$\frac{1+cosx}{1-cosx}$
(2)y=(sinx-cosx)
(3)y=x3+3x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等比數(shù)列{an}中,an∈R+,a4•a5=32,則log2a1+log2a2+…+log2a8的值為( 。
A.10B.20C.36D.128

查看答案和解析>>

同步練習(xí)冊(cè)答案