3.已知下列命題:
①若a>0,則方程ax2+2x=0有解;
②“等腰三角形都相似”的逆命題;
③“若x-$\frac{3}{2}$是有理數(shù),則x是無(wú)理數(shù)”的逆否命題;
④“若a>1,b>1,則a-b>2”的否命題.
其中真命題的序號(hào)是①.

分析 直接求解方程判斷①;分別寫(xiě)出命題的逆命題、逆否命題和否命題判斷②③④.

解答 解:①若a>0,則方程ax2+2x=0有兩不等解,分別為${x}_{1}=0,{x}_{2}=-\frac{2}{a}$,故①是真命題;
②“等腰三角形都相似”的逆命題是:“相似的三角形都是等腰三角形”,是假命題,故②是假命題;
③“若x-$\frac{3}{2}$是有理數(shù),則x是無(wú)理數(shù)”的逆否命題是:“若x是有理數(shù),則x-$\frac{3}{2}$是無(wú)理數(shù)”,是假命題,故③是假命題;
④“若a>1,b>1,則a-b>2”的否命題是:“若a≤1,b≤1,則a-b≤2”,是假命題,故④是假命題.
故答案為:①.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了命題的逆命題、否命題和逆否命題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知α是第三象限角,f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}+α)tan(-α+π)}{tan(α-2π)sin(-α-π)}$.
(1)化簡(jiǎn)f(α);
(2)若cos($α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等邊圓柱(軸截面是正方形的圓柱)的全面積為S,求其內(nèi)接正四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=log2x+log22(2x2)的值域是( 。
A.(-∞,0]B.[4,+∞)C.[0,4]D.[-$\frac{9}{16}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若l∩α=A,b?α,則1與b的位置關(guān)系為相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若A,B∈(0,$\frac{π}{2}$),且A+B>$\frac{π}{2}$,求證:cosA<sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若一個(gè)空間幾何體的三個(gè)視圖都是直角邊長(zhǎng)為1的等腰直角三角形,則這個(gè)空間幾何體的外接球的表面積和內(nèi)切球的表面積之比是(  )
A.$\frac{18+9\sqrt{3}}{2}$B.18+9$\sqrt{3}$C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若曲線y=2x-alnx(a<2)的-條切線l與直線y=x-5平行,且兩直線距離為3$\sqrt{2}$,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)求證:C${\;}_{n}^{m}$=$\frac{m+1}{n+1}$C${\;}_{n+1}^{m+1}$;
(2)求和:C${\;}_{n}^{1}$+22C${\;}_{n}^{2}$+32C${\;}_{n}^{3}$+…+k2C${\;}_{n}^{k}$+…+n2C${\;}_{n}^{n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案