已知函數(shù),其中
若在x=1處取得極值,求a的值;
求的單調(diào)區(qū)間;
(Ⅲ)若的最小值為1,求a的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)設(shè)函數(shù)。
(1)若在處取得極值,求的值;
(2)若在定義域內(nèi)為增函數(shù),求的取值范圍;
(3)設(shè),當(dāng)時(shí),
求證:① 在其定義域內(nèi)恒成立;
求證:② 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè).如果對(duì)任意,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M處的切線方程為.
(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)若時(shí),函數(shù)在其定義域上是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)的最小值;
(Ⅲ)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于P、Q,過(guò)線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問(wèn)是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題15分)已知函數(shù)圖象的對(duì)稱(chēng)中心為,且的極小值為.
(1)求的解析式;
(2)設(shè),若有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),當(dāng)時(shí),使函數(shù)
在定義域[a,b] 上的值域恰為[a,b],若存在,求出k的范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿(mǎn)足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明: ()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為奇函數(shù),且在處取得極大值2.
(1)求函數(shù)的解析式;
(2)記,求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=。
(1)對(duì)于任意實(shí)數(shù)x,f’(x)m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com