如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點.設(shè),,記y=f(x).
(1)求函數(shù)y=f(x)的表達式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對任意的,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.
解:(1)因為
,
所以
又M,G,N三點共線,所以=3
解之得:
(2)設(shè)函數(shù)f(x),g(x)的值域分別為A,B,則AB,
因為,在上單調(diào)遞減,
所以
因為g(x)=x3+3a2x+2a(x∈[0,1]),
所以g'(x)=3x2+3a2≥0恒成立,所以g(x)在[0,1]上單調(diào)遞增,
所以B=[2a,3a2+2a+1],
從而
解得:或0
所以a的取值范圍是
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點.設(shè)
AM
=x
AB
,
AN
=y
AC
,記y=f(x).
(1)求函數(shù)y=f(x)的表達式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對任意的x1∈[
1
2
,1]
,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4--1:幾何證明選講
如圖,D為△ABC的BC邊上的一點,⊙O1經(jīng)過點B、D,交AB于另一點E,⊙O2經(jīng)過點C、D,交AC于另一點F,⊙O1、⊙O2交于點G.求證:
(1)∠BAC+∠EGF=180°;
(2)∠EAG=∠EFG.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省南通市如皋市高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點.設(shè),,記y=f(x).
(1)求函數(shù)y=f(x)的表達式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對任意的,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇期中題 題型:解答題

如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點.設(shè),,記y=f(x).
(1)求函數(shù)y=f(x)的表達式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對任意的,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案