如圖所示,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P(2,0)且斜率為k的直線L交拋物線y=2x于M(x,y),N(x,y)兩點(diǎn). ⑴寫(xiě)出直線L的方程;⑵求xx與yy的值;⑶求證:OM⊥ON
⑴直線L方程為y=k(x-2)
⑵xx=4,yy=-4
(3)根據(jù)已知中直線的方程意義拋物線的方程聯(lián)立方程組,結(jié)合斜率公式來(lái)表示求證。
解析試題分析:解:⑴
(Ⅰ)解:直線l過(guò)點(diǎn)P(2,0)且斜率為k,故可直接寫(xiě)出直線l的方程為y=k(x-2) (k≠0)①
(Ⅱ)解:由①及y2=2x消去y代入可得k2x2-2(k2+1)x+4k2=0.②則可以分析得:點(diǎn)M,N的橫坐標(biāo)x1與x2是②的兩個(gè)根,由韋達(dá)定理得x1x2由韋達(dá)定理得x1x2= =4.又由y12=2x1,y22=2x2得到(y1y2)2=4x1x2=4×4=16,又注意到y(tǒng)1y2<0,所以y1y2=-4.(Ⅲ)證明:設(shè)OM,ON的斜率分別為k1,k2,則k=,k=.相乘得k k==-1OM⊥ON所以證得:OM⊥ON.
考點(diǎn):直線與拋物線的位置關(guān)系
點(diǎn)評(píng):主要是考查了拋物線的方程以及性質(zhì)和直線與拋物線的位置關(guān)系,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,直線m垂直于軸(垂足為T(mén)),與拋物線交于不同的兩點(diǎn)P、Q,且.
(Ⅰ)求點(diǎn)T的橫坐標(biāo);
(Ⅱ)若橢圓C以F1,F2為焦點(diǎn),且F1,F2及橢圓短軸的一個(gè)端點(diǎn)圍成的三角形面積為1.
① 求橢圓C的標(biāo)準(zhǔn)方程;
② 過(guò)點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),設(shè),若的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓具有性質(zhì):若是橢圓:且為常數(shù)上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn),若直線和的斜率都存在,并分別記為,,那么與之積是與點(diǎn)位置無(wú)關(guān)的定值.
試對(duì)雙曲線且為常數(shù)寫(xiě)出類似的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為.
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn),,過(guò)且與坐標(biāo)軸不平行的直線與橢圓交于兩點(diǎn),如果的周長(zhǎng)等于8。
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)的直線與橢圓交于不同兩點(diǎn),試問(wèn)在軸上是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及定值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為,若橢圓以、為焦點(diǎn)、且離心率為.
(1)當(dāng)時(shí),求橢圓的方程;
(2)若拋物線與直線及軸所圍成的圖形的面積為,求拋物線和直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)) 是上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.
(1)求的方程;
(2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)點(diǎn)的直線交直線于,過(guò)點(diǎn)的直線交軸于點(diǎn),,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點(diǎn)、,已知點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,)在線段的垂直平分線上且≤4,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點(diǎn)。
(1)求證:命題“如果直線過(guò)點(diǎn)T(3,0),那么=3”是真命題;
(2)寫(xiě)出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com