【題目】己知圓和拋物線,圓的切線與拋物線相交于不同的兩點,.

1)當(dāng)直線的斜率為1時,求;

2)設(shè)點為點關(guān)于直線的對稱點,是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.

【答案】1;(2)存在,

【解析】

(1)設(shè)直線方程為,根據(jù)相切得到,聯(lián)立方程得到,根據(jù)弦長公式計算得到答案.

(2)考慮斜率存在和不存在兩種情況,聯(lián)立方程得到,根據(jù),計算得到答案.

1)設(shè)直線方程為,則,故.

當(dāng)時,,無解,舍去;

當(dāng)時,,,故,.

.

2,故,設(shè)直線方程為,易知時不成立,

設(shè),則,即.

,故,即,

,.

,故,

,相減得到,解得.

當(dāng)時,,即,驗證滿足,成立;

當(dāng)時,代入計算得到,無解;

當(dāng)斜率不存在時,直線方程為,故.

此時,不滿足;

綜上所述:存在直線,滿足條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線的斜率為1的切線方程;

(Ⅱ)當(dāng)時,求證:;

(Ⅲ)設(shè),記在區(qū)間上的最大值為Ma),當(dāng)Ma)最小時,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問題.

)求全班人數(shù)及分?jǐn)?shù)在之間的頻率;

)現(xiàn)從分?jǐn)?shù)在之間的試卷中任取 3 份分析學(xué)生情況,設(shè)抽取的試卷分?jǐn)?shù)在的份數(shù)為 ,求的分布列和數(shù)學(xué)望期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,的焦點為,過點的直線的斜率為,與拋物線交于,兩點,拋物線在點,處的切線分別為,兩條切線的交點為

1)證明:;

2)若的外接圓與拋物線有四個不同的交點,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是圓上的一動點,點,點在線段上,且滿足.

(1)求點的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點分別為點,,斜率為的動直線交曲線、兩點,其中點在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點為,離心率

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,且,點M在棱上,點NBC的中點,且滿足.

1)證明:平面;

2)若M的中點,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),數(shù)列的前項和為, .

1)求證:數(shù)列為等差數(shù)列;

2)若 ,且數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;

3)若 ,數(shù)列滿足:對于任意給定的正整數(shù) ,是否存在 ,使 ?若存在,求 的值(只要寫出一組即可);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案