已知函數(shù)f(x)=
1
ax2+ax-1
的定義域是R,求a的取值范圍.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:把函數(shù)f(x)=
1
ax2+ax-1
的定義域是R轉(zhuǎn)化為不等式ax2+ax-1≠0對任意實數(shù)x恒成立.然后分a=0和
a≠0討論求解a的取值范圍.
解答: 解:∵函數(shù)f(x)=
1
ax2+ax-1
的定義域是R,
∴不等式ax2+ax-1≠0對任意實數(shù)x恒成立.
當(dāng)a=0時顯然滿足;
當(dāng)a≠0時,由△=a2+4a<0,得-4<a<0.
綜上,a的取值范圍是(-4,0].
點評:本題考查了函數(shù)的定義域及其求法,考查了不等式的解法,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.9m×0.8n,b=0.9n×0.8m,其中m,n為實數(shù),試比較a,b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式:x2-6x+9-m2≤0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=f(-x)x+10,求f(10)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(3x)=6x-5,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(0,1)且與直線y=2x垂直的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點為F1、F2,|F1F2|=14,P為橢圓上一點,∠F1PF2=
2
3
π,若△F1PF2的面積S=13
3
,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=24,S11=0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)當(dāng)n為何值時,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x-2)2+(y-2)2=10和點A(3,5),直線l經(jīng)過點A且與圓M相切.
(1)求直線l方程;
(2)過A作圓的兩條弦AB、AC,且直線AB和AC的斜率相反,求證直線BC的斜率為定值.

查看答案和解析>>

同步練習(xí)冊答案