分析 (1)證明:B1B⊥DE,DE⊥BC,即可證明DE⊥平面BCC1B1;
(2)利用等體積法,求三棱錐D-BCB1的體積.
解答 (1)證明:∵ABC-A1B1C1是直三棱柱,
∴B1B⊥平面ABC,
又DE?平面ABC,
∴B1B⊥DE,…(2分)
∵∠CDE=∠ABC,∠DCE=∠BCA
∴△EDC∽△ABC,
∴∠DEC=∠BAC=$\frac{π}{2}$
即DE⊥BC…(4分)
又B1B∩BC=B
∴DE⊥平面BCC1B1;…(6分)
(2)S△BCD=S△ABC-S△ABD=$\frac{1}{2}×1×2-\frac{1}{2}×1×1$=$\frac{1}{2}$…(9分)
∵B1B⊥平面ABC,
∴B1B為三棱錐B1-BCD的高…(10分)
∴由等體積可得三棱錐D-BCB1的體積=$\frac{1}{3}×\frac{1}{2}×2$=$\frac{1}{3}$…(13分)
點(diǎn)評(píng) 本題考查線面垂直的判定,考查三棱錐體積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,正確利用線面垂直的判定是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ¬p | B. | p∧q | C. | (¬p)∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com