已知函數(shù)在上滿足恒成立,則的取值范圍
是 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2n |
1 |
2 |
1 |
c1 |
1 |
c2 |
1 |
c3 |
1 |
cn |
29 |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省宣城中學(xué)2011-2012學(xué)年高二3月月考數(shù)學(xué)理科試題 題型:044
已知函數(shù)f(x)滿足f(x)+(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
①當(dāng)x≥0時,曲線y=f(x)在點(diǎn)M(t,f(t))的切線l與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
②若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
③設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個數(shù),并作出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市汶上一中2011-2012學(xué)年高二3月月考數(shù)學(xué)理科試題 題型:044
已知函數(shù)f(x)滿足f(x)+(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時,曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個數(shù),并作出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知(Ⅰ)當(dāng),時,問分別取何值時,函數(shù)取得最大值和最小值,并求出相應(yīng)的最大值和最小值;(Ⅱ)若在R上恒為增函數(shù),試求的取值范圍;
(Ⅲ)已知常數(shù),數(shù)列滿足,試探求的值,使得數(shù)列成等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com