【題目】
函數(shù).
(1)當時,求函數(shù)的定義域;
(2)若,判斷的奇偶性;
(3)是否存在實數(shù),使函數(shù)在遞增,并且最大值為1,若存在,求出的值;若不存在,說明理由.
【答案】(1);(2)為奇函數(shù);(3).
【解析】
試題分析:(1)當時,根據(jù)解得;(2)化簡,先判斷定義域關于原點對稱,然后利用奇偶性的定義,判斷,故函數(shù)為奇函數(shù);(3)利用復合函數(shù)的單調性可知,由解得,經(jīng)驗證符合題意.
試題解析:
(1)由題意:,∴,即,所以函數(shù)的定義域為.
(2)易知,∵且,∴關于原點對稱,又∵,
∴,∴為奇函數(shù).
(3)令,∵,,∴在上單調遞減,又∵函數(shù)在遞增,
∴,又∵函數(shù)在的最大值為1,∴,即,∴,∵,∴符合題意.即存在實數(shù),使函數(shù)在遞增,并且最大值為 .
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)要完成下列兩項調查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調查社會購買能力的某項指標;②從某中學的15名藝術特長生中選出3名調查學習負擔情況.這兩項調查宜采用的抽取方法是( )
A.①簡單隨機抽樣,②分層隨機抽樣B.①分層隨機抽樣,②簡單隨機抽樣
C.①②都用簡單隨機抽樣D.①②都用分層隨機抽樣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 已知函數(shù)(,)的圖像關于直線x=對稱,最大值為3,且圖像上相鄰兩個最高點的距離為.
(1)求的最小正周期;
(2)求函數(shù)的解析式;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程。
在平面直角坐標系xOy中,已知曲線,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(2)在曲線上求一點P,使點P到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:關于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(ax2-x+a)的定義域為R,如果p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋擲兩顆骰子,計算:
(1)事件“兩顆骰子點數(shù)相同”的概率;
(2)事件“點數(shù)之和小于7”的概率;
(3)事件“點數(shù)之和等于或大于11”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求二面角B—AC—E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內有兩個定點A(1,0),B(1,﹣2),設點P到A、B的距離分別為,且
(I)求點P的軌跡C的方程;
(II)是否存在過點A的直線與軌跡C相交于E、F兩點,滿足(O為坐標原點).若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知等邊中,,分別為,邊的中點,為的中點,為邊上一點,且,將沿折到的位置,使平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com