設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:(1)f(-1+x)=f(-1-x);(2)函數(shù)在y軸上的截距為1,且f(x+1)-f(x)=x+數(shù)學(xué)公式
(1)求f(x)的解析式;
(2)若x∈[t,t+1],f(x)的最小值為h(t),請寫出h(t)的表達式;
(3)若不等式數(shù)學(xué)公式在t∈[-2,2]時恒成立,求實數(shù)x的取值范圍.

解:(1)由題意可得對稱軸-=-1、且c=1、且a(x+1)2+b(x+1)+c-[ax2+bx+c]=x+,
解得 a=,且 b=1,且c=1,故有
(2)由x∈[t,t+1],f(x)的對稱軸為x=-1,且f(x)的最小值為h(t),
當(dāng)t+1<-1,即t<-2時,函數(shù)f(x)在區(qū)間[t,t+1]上是減函數(shù),h(t)=f(t+1)=t2+2t+
當(dāng) t≤-1≤t+1,即-2≤t≤-1時,h(t)=f(-1)=,
當(dāng)t>-1時,函數(shù)f(x)在區(qū)間[t,t+1]上是增函數(shù),h(t)=f(t)=t2+t+1.
綜上可得,
(3)由不等式在t∈[-2,2]時恒成立,可得 f(x)>tx-1在t∈[-2,2]時恒成立,
即 m(x)=x2+(1-t)x+2>0 在t∈[-2,2]時恒成立.
根據(jù)二次函數(shù)的圖象和性質(zhì)可得,解得-1<t<3,
故t的范圍為(-1,3).
分析:(1)由題意可得對稱軸-=-1、且c=1、且a(x+1)2+b(x+1)+c-[ax2+bx+c]=x+,解得a、b、c的值,可得函數(shù)f(x)的解析式.
(2)由f(x)的對稱軸為x=-1,分當(dāng)t+1<-1、當(dāng) t≤-1≤t+1、當(dāng)t>-1三種情況,分別利用二次函數(shù)的性質(zhì),求得函數(shù)f(x)在區(qū)間[t,t+1]上的最小值h(t)=f(t)的解析式,綜上可得結(jié)論.
(3)由不等式在t∈[-2,2]時恒成立,可得 f(x)>tx-1在t∈[-2,2]時恒成立,即 m(x)=x2+(1-t)x+2>0 在t∈[-2,2]時恒成立.根據(jù)二次函數(shù)的圖象和性質(zhì)可得,由此解得t的范圍.
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,指數(shù)不等式的解法,二次函數(shù)的性質(zhì),函數(shù)的恒成立問題,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿足f(-1)=0,對于任意的實數(shù)x都有f(x)-x≥0,并且當(dāng)x∈(0,2)時,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當(dāng)x∈(-1,1)時,函數(shù)g(x)=f(x)-mx,m∈R是單調(diào)的,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0<x1<x2
1
a
,且函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,則有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個零點,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足:當(dāng)x=1時,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實數(shù)m,n,使x∈[m,n]時,函數(shù)的值域也是[m,n]?若存在,則求出這樣的實數(shù)m,n;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則有( 。

查看答案和解析>>

同步練習(xí)冊答案