【題目】在△ABC中,已知(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),則△ABC的形狀( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
【答案】D
【解析】解:∵(a2+b2)(sinAcosB﹣cosAsinB)=(a2﹣b2)(sinAcosB+cosAsinB),
∴a2sinAcosB﹣a2cosAsinB+b2sinAcosB﹣b2cosAsinB=a2sinAcosB+a2cosAsinB﹣b2sinAcosB﹣b2cosAsinB,
整理得:a2cosAsinB=b2sinAcosB,
在△ABC中,由正弦定理 = =2R得:a=2RsinA,b=2RsinB,代入整理得:
sinAcosA=sinBcosB,
∴2sinAcosA=2sinBcosB,
∴sin2A=sin2B,
∴2A=2B 或者2A=180°﹣2B,
∴A=B或者A+B=90°.
∴△ABC是等腰三角形或者直角三角形.
故選D.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=3,Sn+1=3(Sn+1)(n∈N*). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)在數(shù)列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ對一切n∈N*恒成立,求實數(shù)λ的取值范圍;
(Ⅲ)令Tn= + + +…+ (n∈N*),證明:對于任意的n∈N* , Tn< .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中的“兩鼠穿墻題”是我國數(shù)學的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至11月份銷售某種機械配件的銷售量及銷售單價進行了調(diào)查,銷售單價x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
月份 | 7 | 8 | 9 | 10 | 11 |
銷售單價x元 | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y件 | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關于x的回歸直線方程;
(2)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤? 參考公式:回歸直線方程 =b +a,其中b= .
參考數(shù)據(jù): =392, =502.5.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個正六角星薄片(其對稱軸與水面垂直)勻速地升出水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導函數(shù)y=S'(t)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 .
(1)若 時, ,求cos4x的值;
(2)將 的圖象向左移 ,再將各點橫坐標伸長為原來的2倍,縱坐標不變,得y=g(x),若關于g(x)+m=0在區(qū)間 上的有且只有一個實數(shù)解,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在路邊安裝路燈,路寬為OD,燈柱OB長為h米,燈桿AB長為1米,且燈桿與燈柱成120°角,路燈采用圓錐形燈罩,其軸截面的頂角為2θ,燈罩軸線AC與燈桿AB垂直.
(1)設燈罩軸線與路面的交點為C,若OC=5 米,求燈柱OB長;
(2)設h=10米,若燈罩軸截面的兩條母線所在直線一條恰好經(jīng)過點O,另一條與地面的交點為E(如圖2);
(i)求cosθ的值;
(ii)求該路燈照在路面上的寬度OE的長;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com