4.在△ABC中,A=60°,B=75°,c=3,求C,a,b.

分析 由三角形內(nèi)角和可得C,再由正弦定理可得a和b值.

解答 解:∵在△ABC中,A=60°,B=75°,c=3,
∴C=180°-(60°+75°)=45°,
∴由正弦定理可得a=$\frac{csinA}{sinC}$=$\frac{3×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\frac{3\sqrt{6}}{2}$,
b=$\frac{csinB}{sinC}$=$\frac{3×(\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}×\frac{1}{2})}{\frac{\sqrt{2}}{2}}$=$\frac{3\sqrt{3}+3}{2}$.

點評 本題考查解三角形,涉及正弦定理的應(yīng)用和兩角和與差的三角函數(shù)公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線l的方程為y=$\sqrt{3}$x+1,則該直線l的傾斜角為(  )
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.lg2+lg5=( 。
A.lg7B.lg25C.1D.lg32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=-cos($\frac{x}{2}$-$\frac{π}{3}$).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)如何從函數(shù)y=cosx的圖象變換得到函數(shù)y=f(x)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)己知f(x)=(x2-2ax)ex在[-1,1]上為單調(diào)函數(shù),求正數(shù)a的取值范圍.
(2)已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+2x存在單調(diào)減區(qū)間,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an}滿足(n一1)an+1=(n+1)an-2(n-1),n=1,2,3,…且a100=10098,求數(shù)列{an}的通式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)F1、F2是雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1的焦點,若雙曲線上有一點P,且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lg(ax2-2x+a).
(1)如果f(x)的定義域為R,求a的取值范圍;
(2)如果f(x)的值域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),x∈R.
(1)在所給坐標(biāo)系中用五點法作出它在區(qū)間[$\frac{π}{8}$,$\frac{9π}{8}$]上的圖象.
(2)求f(x)的單調(diào)區(qū)間.
(3)說明f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

同步練習(xí)冊答案