【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,離心率為,過點(diǎn)的直線相交于兩點(diǎn),點(diǎn)為線段的中點(diǎn).

1)當(dāng)的傾斜角為時(shí),求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】12)存在;定點(diǎn)

【解析】

1)由題得,解得,由,得,可得橢圓方程,與直線方程聯(lián)立,利用韋達(dá)定理求出中點(diǎn)坐標(biāo),進(jìn)而可得直線的方程;(2)直線的斜率不為0時(shí),設(shè),直線的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理,結(jié)合平面向量數(shù)量積公式可得在x軸上存在定點(diǎn),使得為定值,再驗(yàn)證直線的斜率為0的情況即可.

1)由題得,解得,由,得,故橢圓方程為,

設(shè),易知直線的方程為,由,得,

于是,

從而,故,

所以直線的方程為.

2)①當(dāng)直線的斜率不為0時(shí),設(shè),直線的方程為

,得,所以

所以

,

,得,故此時(shí)點(diǎn);

②當(dāng)直線的斜率為0時(shí),.

綜上,在x軸上存在定點(diǎn),使得為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓C滿足:圓心在軸上,且與圓相外切.設(shè)圓C軸的交點(diǎn)為M,N,若圓心C軸上運(yùn)動(dòng)時(shí),在軸正半軸上總存在定點(diǎn),使得為定值,則點(diǎn)的縱坐標(biāo)為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),等腰梯形,,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2.

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x1,aR),若對(duì)任意x1[1,+),總存在x2R,使fx1)=gx2),則實(shí)數(shù)a的取值范圍是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,設(shè)所成的角是,繞直線旋轉(zhuǎn)至,則在所有旋轉(zhuǎn)過程中,關(guān)于所成的角的說法正確的是( )

A.當(dāng)時(shí),B.當(dāng)時(shí),

C.當(dāng)時(shí),D.當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),直線的參數(shù)方程(為參數(shù)).

1)求曲線在直角坐標(biāo)系中的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點(diǎn)極坐標(biāo)為時(shí),求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),直線的參數(shù)方程(為參數(shù)).

1)求曲線在直角坐標(biāo)系中的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點(diǎn)極坐標(biāo)為時(shí),求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若函數(shù)在區(qū)間上的值域?yàn)?/span>,則稱區(qū)間是函數(shù)完美區(qū)間,另外,定義區(qū)間復(fù)區(qū)間長度,已知函數(shù),則(

A.的一個(gè)完美區(qū)間

B.的一個(gè)完美區(qū)間

C.的所有完美區(qū)間復(fù)區(qū)間長度的和為

D.的所有完美區(qū)間復(fù)區(qū)間長度的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心為原點(diǎn),左焦點(diǎn)為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點(diǎn).

1)若為線段的中點(diǎn),求直線的方程.

2)求點(diǎn)是直線上一點(diǎn),點(diǎn)在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問:是否為定值?若是,請(qǐng)求出的值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案