已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.

(Ⅰ)求證:DF⊥平面PAF;

(Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當(dāng)PA=AB=4時,求四面體E-GFD的體積.

 

【答案】

(Ⅰ)由矩形ABCD中,AD=2AB,點F是BC的中點,得到平面

(II)過,即為所求. 

【解析】

試題分析:(Ⅰ)在矩形ABCD中,因為AD=2AB,點F是BC的中點,

所以平面                6分

(II)再過,所以平面,且 10分

所以平面平面,所以平面,點即為所求. 

因為,則,AG=1

                    12分

考點:本題主要考查立體幾何中的平行關(guān)系、幾何體體積的計算。

點評:簡單題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟。利用向量可簡化證明過程。(II)利用了“等積法”。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點,且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PED,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,已知ABCD是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點,PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求證:MN⊥AB;
(2)求二面角P-CD-A的大。
(3)求三棱錐D-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是矩形,M、N分別是PC、PD上的點,MN⊥PC,且PA⊥平面ABCD,AN⊥PD,求證:AM⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)已知ABCD是矩形,AD=4,AB=2,E、F分別是AB、BC 的中點,PA丄面ABCD.
(1)求證:PF丄DF;
(2)若PD與面ABCD所成角為300在PA上找一點 G,使EG∥面PFD,并求出AG的長.

查看答案和解析>>

同步練習(xí)冊答案