已知|
a
|=
2
,|
b
|=1,且
a
b
的夾角為45°,則
a
b
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義即可得出.
解答: 解:∵|
a
|=
2
,|
b
|=1,且
a
b
的夾角為45°,
a
b
=|
a
| |
b
|cos45°
=
2
×1×
2
2
=1.
故答案為:1.
點(diǎn)評(píng):本題查克拉數(shù)量積的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m(a),M(a)分別是函數(shù)y=x2-ax+0.5a(a>0,0≤x≤1)的最小值和最大值,
(1)求m(a),M(a);
(2)求最值m(a),M(a)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x],則:
(1)設(shè)函數(shù)f(x)=
x        x≥0
f(x+1)  x<0
,則函數(shù)y=f(x)-
1
4
x-
1
4
的不同零點(diǎn)有
 
個(gè);
(2){
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,AB=
2
,BC=3,且∠ABC=45°,以BC為一直角邊在BC的下方作Rt△EBC,BE=2.連結(jié)BD,過(guò)點(diǎn)E作EF平行BD,且EF=BD(點(diǎn)D,F(xiàn)在直線BE的同側(cè)),則?ABCD與△BEF的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC是邊長(zhǎng)為1的正三角形,且點(diǎn)P在邊BC上運(yùn)動(dòng).當(dāng)
PA
PC
取得最小值時(shí),則cos∠PAB的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),P為橢圓C上任意一點(diǎn),且cos∠F1PF2的最小值為
1
3
.動(dòng)圓x2+y2=t2
2
<t<
3
)與橢圓C相交于A、B、C、D四點(diǎn),則矩形ABCD面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足
an+2
an+1
+
an+1
an
=k(k為常數(shù)),則稱(chēng)數(shù)列{an}為等比和數(shù)列,k稱(chēng)為公比和,已知數(shù)列{an}是以3為公比和的等比和數(shù)列,其中a1=1,a2=2,則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于空間中的三條直線,有以下四個(gè)條件:
①三條直線兩兩相交;
②三條直線兩兩平行;
③三條直線共點(diǎn);
④兩直線相交,第三條平行于其中一條與另個(gè)一條相交.
其中使這三條直線共面的充分條件有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)M(1,2)為雙曲線C右支上一點(diǎn),且F2在以線段MF1為直徑的圓的圓周上,則雙曲線C的離心率為(  )
A、
2
+1
B、2
2
-1
C、3+2
2
D、
6
+
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案