14.已知公差為1的等差數(shù)列{an}的前n項(xiàng)和為Sn且S3=2a3,令bn=$\frac{1}{{S}_{n}}$(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)通過(guò)設(shè)an=a1+n-1,利用S3=2a3計(jì)算可知首項(xiàng)a1=1,進(jìn)而可得結(jié)論;
(2)通過(guò)(1)可知Sn=$\frac{n(n+1)}{2}$,裂項(xiàng)可知bn=2($\frac{1}{n}$-$\frac{1}{n+1}$),并項(xiàng)相加即得結(jié)論.

解答 解:(1)依題意可知an=a1+n-1,
∵S3=2a3,
∴S2=a3,即a1+a1+1=a1+2,
∴a1=1,
∴數(shù)列{an}的通項(xiàng)公式an=n;
(2)由(1)可知Sn=$\frac{n(n+1)}{2}$,
∴bn=$\frac{1}{{S}_{n}}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴數(shù)列{bn}的前n項(xiàng)和Tn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.定義在R上的奇函數(shù)f(x)對(duì)一切x∈(-∞,0]恒滿足′(x)≥0,若不等式f(m•3x)+f(3x-9x-2)<0解集為R,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)=sinx+log2$\frac{1+x}{1-x}$+1.
(1)求f($\frac{1}{2}$)+f(-$\frac{1}{2}$)的值;
(2)若f(sinθ)>f(cosθ),θ為銳角,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)是R上的單調(diào)函數(shù),且對(duì)任意實(shí)數(shù)x,都有f[f(x)+$\frac{2}{{2}^{x}+1}$]=$\frac{1}{3}$,則f(log23)=( 。
A.1B.$\frac{4}{5}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知:A(2,5),B(6,-1),C(9,1),求證:AB⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,其公比q≠1,若a1=b1,a11=b11,且{an}和{bn}各項(xiàng)都是正數(shù),則a6與b6的大小關(guān)系是>.(填“>”或“=”或“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知拋物線y2=4x,直線l經(jīng)過(guò)點(diǎn)(0,2),且與拋物線交于兩點(diǎn),則直線l的斜率k的取值范圍k<$\frac{1}{2}$,且k≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知中心為坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn);
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于2?若存在求出直線方程;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若橢圓$\frac{x^2}{k+8}+\frac{y^2}{9}=1$的離心率$e=\frac{1}{3}$,則k的值為0或$\frac{17}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案