【題目】小明同學(xué)在寒假社會(huì)實(shí)踐活動(dòng)中,對(duì)白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進(jìn)行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號(hào)

1月12號(hào)

1月13號(hào)

1月14號(hào)

1月15號(hào)

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;

(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報(bào)1月16號(hào)的白天平均氣溫為,請(qǐng)預(yù)測該奶茶店這種飲料的銷量.

(參考公式:,

【答案】(1);(2);(3)19杯.

【解析】試題分析:(1)由選取的組數(shù)據(jù)恰好是相鄰天的數(shù)據(jù)為事件,得出基本事件的總數(shù),利用古典概型,即可求解事件的概率;

2)由數(shù)據(jù)求解,求由公式,求得 ,即可求得回歸直線方程;

3)當(dāng),代入回歸直線方程,即可作出預(yù)測的結(jié)論。

試題解析:

)設(shè)選取的組數(shù)據(jù)恰好是相鄰天的數(shù)據(jù)為事件,所有基本事件(其中,月份的日期數(shù))有種, 事件包括的基本事件有,,,

種. 所以

)由數(shù)據(jù),求得

由公式,求得,, 所以關(guān)于的線性回歸方程為

)當(dāng)時(shí),.所以該奶茶店這種飲料的銷量大約為 杯.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),若橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到直線的距離等于短半軸的長,已知,過的直線與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,則S13等于(
A.152
B.154
C.156
D.158

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計(jì)

1

(1)求出表中及圖中的值;

(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B分別在射線CM,CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN= ,在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c
(1)若a,b,c依次成等差數(shù)列,且公差為2,求c的值:
(2)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為橢圓上一點(diǎn). 的重心為,內(nèi)心為,且,則該橢圓的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體中,
(1)求異面直線BD與B1C所成的角
(2)求證:平面ACB1⊥平面B1D1DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是矩形, 平面 , , 分別是, 的中點(diǎn).

(Ⅰ)求證: ∥平面;

(Ⅱ)求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)一次數(shù)學(xué)考試后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,隨機(jī)抽取學(xué)生的數(shù)學(xué)成績,制成表所示的頻率分布.

組號(hào)

分組

頻數(shù)

頻率

第一組

第二組

第三組

第四

第五組

合計(jì)

(1)、、值;

(2)若從第三、四、五中用分層抽樣方法抽取學(xué)生,在這學(xué)生中隨機(jī)抽取學(xué)生與張老師面談求第三組中至少有學(xué)生與張老師面談的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案