分析 (1)先求出函數(shù)f(x)的導(dǎo)數(shù),得到方程組,求出a,b的值,從而求出函數(shù)的解析式;
(2)先求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值;
(3)先求出函數(shù)f(x)在[-3,6]上的單調(diào)性,從而求出函數(shù)的最小值.
解答 解:(1)$f'(x)=\frac{{-a{x^2}+ab}}{{{{({x^2}+b)}^2}}}$,
根據(jù)題意得$\left\{\begin{array}{l}{f^'}(1)=0\\ f(1)=2\end{array}\right.$,解得a=4,b=1,
所以$f(x)=\frac{4x}{{{x^2}+1}}$;
(2)由(1)得:f(x)=$\frac{4x}{{x}^{2}+1}$,∴f′(x)=$\frac{-{4x}^{2}+4}{{{(x}^{2}+1)}^{2}}$,
令f′(x)>0,解得:-1<x<1,令f′(x)<0,解得:x<-1或x>1,
∴函數(shù)f(x)的增區(qū)間(-1,1),減區(qū)間(-∞,-1),(1,+∞),
∴f(x)極小值=f(-1)=$\frac{-4}{1+1}$=-2,f(x)極大值=f(1)=$\frac{4}{1+1}$=2;
(3)由(2)知,f(x)在(-3,-1),(1,6)上遞減,在(-1,1)上遞增,
∴f(x)的極小值是f(-1),
又 f(6)=$\frac{24}{37}$,f(-1)=-2,
∴f(x)的最小值是-2.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 3個(gè) | C. | 7個(gè) | D. | 9個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{2}{3}$π,π) | B. | ($\frac{π}{2}$,$\frac{5}{6}$π] | C. | [0,$\frac{π}{2}$]∪[$\frac{5π}{6}$,π) | D. | [0,$\frac{π}{2}$]∪[$\frac{2π}{3}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,5,8 | B. | {2,5,8} | C. | 5 | D. | {5} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com