(1)化簡:
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(2)已知tanθ+sinθ=a,tanθ-sinθ=b,求證:(a2-b22=16ab.
考點:三角函數(shù)中的恒等變換應(yīng)用,運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)利用三角函數(shù)的誘導(dǎo)公式化簡即可.
(2)首先將等式的左邊化簡為左邊=[(a+b)(a-b)]2=16tan2θsin2θ,然后將右邊化簡為右邊=16(tanθ+sinθ)(tanθ-sinθ)=16tan2θsin2θ.從而證明原式成立.
解答: 解:(1)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

=
(-sinα)(-cosα)(-sinα)(-sinα)
(-cosα)sinαsinαcosα
=-tanα

(2)證明:左邊=(a2-b22
=[(a+b)(a-b)]2
=[(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)]2
=16tan2θsin2θ
右邊=16ab
=16(tanθ+sinθ)(tanθ-sinθ)
=16(tan2θ-sin2θ)
=16(
sin2θ
cos2θ
-sin2θ)

=16•
sin2θ(1-cos2θ)
cos2θ

=16tan2θsin2θ
左邊=右邊
∴(a2-b22=16ab
點評:本題考查三角函數(shù)誘導(dǎo)公式,三角函數(shù)的恒等變換等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列的{an}的前n項和Sn,若{an}和{
Sn
}都是等差數(shù)列,則
Sn+10
an
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(b-
2-a2
)x+a+b
是偶函數(shù),則此函數(shù)的圖象與y軸交點的縱坐標(biāo)的最大值為(  )
A、
2
B、2
C、4
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
+ax+b
的圖象在點A(1,f(1))處的切線與直線l:2x-4y+3=0平行.
(Ⅰ)證明函數(shù)y=f(x)在區(qū)間(1,e)存在最大值;
(Ⅱ)記函數(shù)g(x)=xf(x)+c,若g(x)≤0,對一切x∈(0,+∞),b∈(0,
3
2
)
恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

德陽中學(xué)數(shù)學(xué)競賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,
課     程 初等代數(shù) 初等幾何 初等數(shù)論 微積分初步
合格的概率
3
4
2
3
2
3
1
2
(1)求甲同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;
(2)記ξ表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某簡諧運動的圖象對應(yīng)的函數(shù)解析式為:y=
2
sin(2x-
π
4
).
(1)指出此簡諧運動的周期、振幅、頻率、相位和初相;
(2)利用“五點法”作出函數(shù)在一個周期(閉區(qū)間)上的簡圖;
(3)說明它是由函數(shù)y=sinx的圖象經(jīng)過哪些變換而得到的.
【解】:(1)周期:
 
;振幅:
 
;頻率:
 
;相位:
 
;初相:
 

x
  2x-
π
4
0
sin(2x-
π
4
)
   y
(2)

(3)①先將函數(shù)y=sinx的圖象
 
  得到函數(shù)y=sin2x的圖象;②再將函數(shù)y=sin2x的圖象
 
 得到函數(shù)y=sin(2x-
π
4
)
的圖象;③最后再將函數(shù)y=sin(2x-
π
4
)
的圖象
 
得到函數(shù)y=
2
sin(2x-
π
4
)
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2
sinx+sin(
π
4
-x)

(Ⅰ)求f(x)的最小正周期與單調(diào)增區(qū)間.
(Ⅱ)當(dāng)x∈(-
π
2
,
π
2
)
,求f(x)的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將θ=
π
10
代入2sin23θ-2sin2 θ=cos2θ-cos6θ,證明:sin
10
-sin
π
10
=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA,cos
B
2
,sinC成等比數(shù)列,則此三角形的形狀是
 

查看答案和解析>>

同步練習(xí)冊答案