如圖,拋物線y=-
1
2
x2
上有兩點(diǎn)A(x1,y1)、B(x2,y2),且
OA
OB
=0
,又
OM
=(0,-2)

(1)求證:
AM
AB
;
(2)若
MA
=-2
MB
,求AB所在直線方程.
分析:(1)先確定x1x2=-4,再用坐標(biāo)表示向量,利用向量共線的條件,即可得到結(jié)論;
(2)利用向量條件,確定A的坐標(biāo),再利用兩點(diǎn)式,即可求AB所在直線方程.
解答:(1)證明:∵A(x1,y1)、B(x2,y2),且
OA
OB
=0
,
∴x1x2+y1y2=0
∴x1x2+
1
4
(x1x22=0
∴x1x2=-4
AM
=(-x1,-2-y1)
=(-x1,-2+
1
2
x12
),
AB
=(x2-x1,y2-y1)=(x2-x1,-
1
2
x12
+
1
2
x22

∴(-x1)(-
1
2
x12
+
1
2
x22
)+(x2-x1)(-2+
1
2
x12
)=0
AM
AB
;
(2)解:∵
MA
=-2
MB
,∴(x1,2-
1
2
x12
)=-2(x2,2-
1
2
x22

∴x1=-2x2,
∵x1x2=-4,∴x2=
2

∴x1=-2x2=-2
2

∴y1=-
1
2
x12
=-4,即A(-2
2
,-4)
∴AB所在直線方程為
y+2
-4+2
=
x
-2
2
,即y=
2
2
x-2
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=x2第一象限部分上的一系列點(diǎn)Ai(i=1,2,3,…,n,…)與y正半軸上的點(diǎn)B1及原點(diǎn),構(gòu)成一系列正三角形AiBi-1Bi(記B0為O),記ai=|AiAi+1|.
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式an
(3)求證:
1
a
2
1
+
1
a
2
2
+
1
a
2
n
+…+
1
a
2
n
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥y軸交直線BC于點(diǎn)Q.
①當(dāng)x取何值時(shí),線段PQ的長(zhǎng)度取得最大值,其最大值是多少?
②是否存在這樣的點(diǎn)P,使∠OQA為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)一模)如圖,拋物線y=-x2+9與x軸交于兩點(diǎn)A,B,點(diǎn)C,D在拋物線上(點(diǎn)C在第一象限),CD∥AB.記|CD|=2x,梯形ABCD面積為S.
(Ⅰ)求面積S以x為自變量的函數(shù)式;
(Ⅱ)若
|CD||AB|
≤k
,其中k為常數(shù),且0<k<1,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2-5ax+4經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),已知BC∥x軸,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且AC=BC.
(1)寫(xiě)出A,B,C三點(diǎn)的坐標(biāo)并求拋物線的解析式;
(2)探究:若點(diǎn)P是拋物線對(duì)稱軸上且在x軸下方的動(dòng)點(diǎn),是否存在△PAB是等腰三角形.若存在,求出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案