【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
(1)求λ的值及數(shù)列{an}的通項公式;
(2)設(shè) ,且數(shù)列{bn}的前n項和為Sn , 求S2n .
【答案】
(1)解:∵a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2),∴a2=2λ,a3=5λ﹣1=9,解得λ=2.
∴an﹣an﹣1=2n﹣1(n≥2).
∴an=(2n﹣1)+(2n﹣3)+…+3+1= =n2.
(2)解: =(﹣1)n(n2+n),
b2n﹣1+b2n=﹣[(2n﹣1)2+(2n﹣1)]+[(2n)2+2n]=4n.
S2n=4× =2n2+2n
【解析】(I)a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2),可得a2=2λ,a3=5λ﹣1=9,解得λ.可得an﹣an﹣1=2n﹣1(n≥2).利用“累加求和”方法即可得出.(II) =(﹣1)n(n2+n),可得b2n﹣1+b2n=﹣[(2n﹣1)2+(2n﹣1)]+[(2n)2+2n]=4n.即可得出S2n .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=( )
A.9
B.15
C.18
D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 是 或 的充分不必要條件
B.若命題 ,則
C.線性相關(guān)系數(shù) 的絕對值越接近1,表示兩變量的相關(guān)性越強
D.用頻率分布直方圖估計平均數(shù),可以用每個小矩形的高乘以底邊中點橫坐標(biāo)之和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人數(shù)學(xué)成績的莖葉圖如圖所示:
(1)求出這兩名同學(xué)的數(shù)學(xué)成績的平均數(shù)、標(biāo)準(zhǔn)差.
(2)比較兩名同學(xué)的成績,談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù) 的圖象上每個點的橫坐標(biāo)擴大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個單調(diào)遞減區(qū)間為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點,且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知點P( ,1),直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)為極點,以O(shè)x為極軸,選擇相同的單位長度建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ= cos(θ- )
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,求點P到A,B兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù) 的圖象上每個點的橫坐標(biāo)擴大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個單調(diào)遞減區(qū)間為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水果的單個質(zhì)量在500g以上視為特等品.隨機抽取1000個該水果,結(jié)果有50個特等品.將這50個水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.
(1)估計該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個特等品,據(jù)此估計該批水果中沒有達到特等品的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com