【題目】ABC中,D是BC上的點,AD平分BAC,ABD面積是ADC面積的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的長

【答案】
(1)

(I)


(2)

(II)BD=,AC=1


【解析】
(I)SABD=ABADsinBAD。SADC=ACADsinCAD,因為SABD=2SADC,BAD=CAD,所以AB=2AC
由正弦定理可得,==。
(II)因為SABD:SADC=BD:DC,所以BD=,在ABD和ADC中,由余弦定理得AB2=AD2+BD2-2ADBDcosADB,
AC2=AD2+DC2-2ADDCcosADC,AB2+2AC2=3AD2+BD2+2DC2=6
由(I)知AB=2AC,所以AC=1
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,且.

1)證明:若,則是偶數(shù);

2)設(shè),且,求實數(shù)的值;

3)設(shè),求證:;并求滿足的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記BOP=x,將動點P到A,B兩點距離之和表示為x的函數(shù)f(x),則圖像大致為()

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖O是等腰三角形ABC內(nèi)一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.

(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=emx+x2-mx
(1)(I)證明:f(x)在(-,0)單調(diào)遞減,在(0,+)單調(diào)遞增;
(2)(II)若對于任意x1 , x2[-1,1],都有|f(x1)-f(x2)|e-1,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·新課標I卷)Sn為數(shù)列{an}的前n項和.已知an>0,an2+2an=4Sn+3,
(1)求{an}的通項公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·四川)在三棱住ABCA1B1C1中,∠BAC=90°,其正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是直角邊長為1的等腰直角三角形,設(shè)點MN , P分別是AB , BC , B1C1的中點,則三棱錐PA1MN的體積是 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過切削,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工作的一個面內(nèi),則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案