【題目】把一顆骰子投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.已知方程組 .
(1)求方程組只有一個(gè)解的概率;
(2)若方程組每個(gè)解對(duì)應(yīng)平面直角坐標(biāo)系中點(diǎn)P(x,y),求點(diǎn)P落在第四象限的概率.
【答案】
(1)解:把一顆骰子投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,
則基本事件空間Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),
(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),
(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),
(5,2),(5,3),(5,4)(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),
(6,5),(6,6)}共有36種,
設(shè)方程組只有一個(gè)解為事件A,則事件A的對(duì)立事件是方程組無解,
若方程組無解,則兩線平行, ,即a=2b,此時(shí)有3個(gè)滿足,(2,1),(4,2),(6,3),
所以,方程組只有一個(gè)解的概率 .
(2)解:設(shè)點(diǎn)P落在第四象限為事件B,
由方程組 ,得 ,
若點(diǎn)P落在第四象限,則有 ,
當(dāng)2b﹣a>0時(shí), ,
即 , , , ,
所以符合條件的數(shù)組B={(2,2),(2,3),(3,2),(3,3),(3,4),(3,5),
(4,2),(4,3),(4,4),(4,5),(4,6)(5,2),(5,3),(5,4),(5,5),
(5,6)(6,2),(6,3),(6,4),(6,5),(6,6)}共21組.
當(dāng)2b﹣a<0時(shí), ,不存在符合條件的數(shù)組.
所以,點(diǎn)P落在第四象限的概率 .
【解析】(1)利用列舉法求出基本事件空間Ω,設(shè)方程組只有一個(gè)解為事件A,則事件A的對(duì)立事件是方程組無解,由此利用對(duì)立事件概率計(jì)算公式能求出方程組只有一個(gè)解的概率.(2)設(shè)點(diǎn)P落在第四象限為事件B,利用列舉法求出符合條件的數(shù)組的個(gè)數(shù),由此能求出點(diǎn)P落在第四象限的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)),記的導(dǎo)函數(shù)為.
(1) 證明:當(dāng)時(shí), 在上的單調(diào)函數(shù);
(2)若在處取得極小值,求的取值范圍;
(3)設(shè)函數(shù)的定義域?yàn)?/span>,區(qū)間.若在上是單調(diào)函數(shù),則稱在上廣義單調(diào).試證明函數(shù)在上廣義單調(diào).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問部分職工,根據(jù)被訪問職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示).
(1)求頻率分布表中①、②、③位置相應(yīng)數(shù)據(jù),并在答題紙上完成頻率分布直方圖;
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 5 | 0.050 |
第2組 | [60,70) | ① | 0.350 |
第3組 | [70,80) | 30 | ② |
第4組 | [80,90) | 20 | 0.200 |
第5組 | [90,100] | 10 | 0.100 |
合計(jì) | ③ | 1.00 |
(2)為進(jìn)一步了解情況,該企業(yè)決定在第3,4,5組中用分層抽樣抽取5名職工進(jìn)行座談,求第3,4,5組中各自抽取的人數(shù);
(3)求該樣本平均數(shù) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種出口產(chǎn)品的關(guān)稅稅率t.市場價(jià)格x(單位:千元)與市場供應(yīng)量p(單位:萬件)之間近似滿足關(guān)系式:,其中k.b均為常數(shù).當(dāng)關(guān)稅稅率為75%時(shí),若市場價(jià)格為5千元,則市場供應(yīng)量約為1萬件;若市場價(jià)格為7千元,則市場供應(yīng)量約為2萬件.
(1)試確定k.b的值;
(2)市場需求量q(單位:萬件)與市場價(jià)格x近似滿足關(guān)系式:.P = q時(shí),市場價(jià)格稱為市場平衡價(jià)格.當(dāng)市場平衡價(jià)格不超過4千元時(shí),試確定關(guān)稅稅率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ∥ ,求 的值;
(2)已知函數(shù)f(x)=2( + ) ﹣2m2﹣1,若函數(shù)f(x)在[0, ]上有零點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(n)是定義在N*上的增函數(shù),f(4)=5,且滿足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角中,∠,,D、E分別是AB、BC邊的中點(diǎn),沿DE將折起至,且∠.
(Ⅰ)求四棱錐F-ADEC的體積;
(Ⅱ)求證:平面ADF⊥平面ACF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com