焦距為,離心率,焦點(diǎn)在軸上的橢圓標(biāo)準(zhǔn)方程是 (     )

A.          B.      C.     D.

 

【答案】

D

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為4,設(shè)右焦點(diǎn)為F1,離心率為e.
(1)若e=
2
2
,求橢圓的方程;
(2)設(shè)A、B為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),AF1的中點(diǎn)為M,BF1的中點(diǎn)為N,若原點(diǎn)O在以線段MN為直徑的圓上.
①證明點(diǎn)A在定圓上;
②設(shè)直線AB的斜率為k,若k≥
3
,求e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高二第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

焦距為,離心率,焦點(diǎn)在軸上的橢圓標(biāo)準(zhǔn)方程是        (    )

                

            

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省青島市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:的焦距為,離心率為,其右焦點(diǎn)為F,過點(diǎn)B(0,b)作直線交橢圓于另一點(diǎn)A.
(Ⅰ)若,求△ABF外接圓的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線與橢圓N:相交于兩點(diǎn)G、H,設(shè)P為N上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省成都市模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

,為常數(shù),離心率為的雙曲線上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

第二問中,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

(Ⅱ)設(shè),,

故直線的方程為,即,

所以,同理可得:,

是方程的兩個(gè)不同的根,所以

由已知易得,即

 

查看答案和解析>>

同步練習(xí)冊答案