【題目】已知橢圓的上頂點(diǎn)為,直線與該橢圓交于兩點(diǎn),且點(diǎn)恰為的垂心,則直線的方程為______ .

【答案】

【解析】

設(shè)PQ直線yx+m,Px1,y1),Qx2,y2),,3x2+4mx+2m2﹣2=0,再由根的判別式和根與系數(shù)的關(guān)系進(jìn)行求解.

上頂點(diǎn),右焦點(diǎn)F為垂心

因?yàn)?/span>=﹣1,且FMl

所以k1=1,

所以設(shè)PQ直線yx+m,

且設(shè)Px1y1),Qx2,y2

y,得3x2+4mx+2m2﹣2=0

△=16m2﹣12(2m2﹣2)>0,m2<3

y1y2=(x1+m)(x2+m)=x1x2+mx1+x2)+m2

F為△MPQ的垂心,

PFMQ,∴

,

經(jīng)檢驗(yàn)滿足m2<3

∴存在滿足條件直線l方程為:xy+1=0,3x﹣3y﹣4=0

xy+1=0過M點(diǎn) 即MP重合 不構(gòu)成三角形,

∴3x﹣3y﹣4=0滿足題意.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校數(shù)學(xué)與統(tǒng)計(jì)學(xué)院為了對2018年錄取的大一新生有針對性地進(jìn)行教學(xué).從大一新生中隨機(jī)抽取40名,對他們在2018年高考的數(shù)學(xué)成績進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)40名新生的數(shù)學(xué)分?jǐn)?shù)分布在內(nèi).當(dāng)時(shí),其頻率.

(Ⅰ)求的值;

(Ⅱ)請?jiān)诖痤}卡中畫出這40名新生高考數(shù)學(xué)分?jǐn)?shù)的頻率分布直方圖,并估計(jì)這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù);

(Ⅲ)從成績在100~120分的學(xué)生中,用分層抽樣的方法從中抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)選兩人甲、乙,記甲、乙的成績分別為,求概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí), 取得極值,的值;

(Ⅱ)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),時(shí)總有 成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體 的中點(diǎn), 在棱 , .

1若異面直線互相垂直,的長

2當(dāng)四棱錐的體積為時(shí),求證直線平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)?/span>的函數(shù)滿足:對于任意的實(shí)數(shù)都有 成立,且當(dāng)時(shí),

(Ⅰ)判斷函數(shù)的奇偶性,并證明你的結(jié)論;

(Ⅱ)證明上為減函數(shù);

(Ⅲ)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是正三角形,四邊形是正方形.

(Ⅰ)求證:;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)分別是,,直線,相交于點(diǎn),且它們的斜率之積為.

1)求動點(diǎn)的軌跡方程;

2)若過點(diǎn)的直線交動點(diǎn)的軌跡于、兩點(diǎn), 為線段,的中點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個(gè)零點(diǎn),判斷是否為的零點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐 都是邊長為的等邊三角形, , 分別是、的中點(diǎn).

(1)求證: 平面;

(2)連接,求證: 平面;

(3)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案