已知奇函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(0,1)時(shí),函數(shù)f(x)=2x,則f(數(shù)學(xué)公式)=________

-
分析:由函數(shù)是奇函數(shù)得到f(-x)=-f(x)和f(x+2)=f(x)把則f()進(jìn)行變形得到∈(0,1)時(shí)函數(shù)f(x)=2x,求出即可.
解答:根據(jù)對(duì)數(shù)函數(shù)的圖象可知<0,且=-log223
奇函數(shù)f(x)滿足f(x+2)=f(x)和f(-x)=-f(x)
則f()=f(-log223)=-f(log223)=-f(log223-4)=-f(),
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/547805.png' />∈(0,1)=-=-
故答案為-
點(diǎn)評(píng):考查學(xué)生應(yīng)用函數(shù)奇偶性的能力,函數(shù)的周期性的掌握能力,以及運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì)能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足f(x+1)=f(x-1),給出以下命題:①函數(shù)f(x)是周期為2的周期函數(shù);②函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;③函數(shù)f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)對(duì)稱;④若函數(shù)f(x)是(0,1)上的增函數(shù),則f(x)是(3,5)上的增函數(shù),其中正確命題的番號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足f(x+2)=-f(x),且當(dāng)x∈(0,1)時(shí),f(x)=2x,則f(log
1
2
18)
的值為
-
9
8
-
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足f(2-x)=f(2+x),且當(dāng)x∈(0,2)時(shí),有f(x)=log2x,則f(2013)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足f(x+1)=f(x-1),給出以下命題:
①函數(shù)f(x)是周期為2的周期函數(shù);            
②函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;
③函數(shù)f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)對(duì)稱;
④若函數(shù)f(x)是(0,1)上的增函數(shù),則f(x)是(3,5)上的增函數(shù),其中正確命題有
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=ax3+bx2+cx+d滿足:f'(1)=0,f(1)=-
23

(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x∈[-1,1]時(shí),證明:函數(shù)圖象上任意兩點(diǎn)處的切線不可能互相垂直;
(Ⅲ)若對(duì)于任意實(shí)數(shù)α和β,不等式|f(2sinα)-f(2sinβ)|≤m恒成立,求m的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案