分析 (1)要證明DC∥平面ABE,關(guān)鍵是要在平面ABE中找到可能與DC平行的直線,觀察發(fā)現(xiàn)BE滿足要求,根據(jù)已知證明BE∥DC,再根據(jù)線面平行的判定定理即可求解;
(2)要證明AF⊥平面BCDE,由我們要證明AF與平面BCDE中兩條相交直線都垂直,由題意分析易證DC、BC均與AF垂直.
解答 證明:(1)∵DC⊥平面ABC,EB⊥平面ABC
∴DC∥EB,又∵DC?平面ABE,EB?平面ABE,
∴DC∥平面ABE.
(2)DC⊥平面ABC,AF?平面ABC,∴DC⊥AF,
又∵AB=AC,F(xiàn)為BC的中點(diǎn),
∴AF⊥BC,
∵BC∩DC=C,
∴AF⊥平面BCDE.
點(diǎn)評 本題考查直線和平面垂直、平行的判定,證明時,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說,根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14π | B. | 16π | C. | 13π | D. | 15π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小正周期為π的奇函數(shù) | B. | 最小正周期為$\frac{π}{2}$的偶函數(shù) | ||
C. | 最小正周期為$\frac{π}{2}$的奇函數(shù) | D. | 最小正周期為π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com