設Sn是等差數(shù)列{an}(n∈N*)的前n項和,且a1=1,a4=7,則S9=
 
分析:先根據(jù)數(shù)列{an}為等差數(shù)列,求出公差d,然后根據(jù)等差數(shù)列的前n項和公式求得S9
解答:解:∵數(shù)列{an}為等差數(shù)列,
∴an=a1+(n-1)d,
Sn=na1+
n(n-1)
2
d

∵a1=1,a4=7
∴a4=1+(4-1)d=7
∴d=2
∴S9=9×1+
9×(9-1)
2
×2=81
故答案為:81
點評:本題主要考查了等差數(shù)列的通項公式和前n項和公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設Sn 是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③關于x的不等式ax+b>0的解集為(-∞,1),則關于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,S3=3(a2+a8),則
a3
a5
的值為(  )
A、
1
6
B、
1
3
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,a12=-8,S9=-9,則S16=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前n項和,且a4=-4,a9=4,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)設Sn是等差數(shù)列{an}的前n項和,a1=2,a5=3a3,則S9=( 。

查看答案和解析>>

同步練習冊答案