(本題滿分12分)

設(shè)是定義在上的奇函數(shù),函數(shù)的圖象關(guān)于軸對稱,且當(dāng)時,

(I)求函數(shù)的解析式;

(II)若對于區(qū)間上任意的,都有成立,求實數(shù)的取值范圍.

 

【答案】

(1)

(2),實數(shù)的取值范圍為

【解析】本題主要考查函數(shù)恒成立問題以及函數(shù)解析式的求解及常用方法和奇偶函數(shù)圖象的對稱性,是對函數(shù)知識的綜合考查,屬于中檔題.

(1)先利用函數(shù)g(x)與f(x)的圖象關(guān)于y軸對稱得:f(x)的圖象上任意一點P(x,y)關(guān)于y軸對稱的對稱點Q(-x,y)在g(x)的圖象上;然后再利用x∈[-1,0)時,-x∈(0,1],則f(x)=g(-x)求出一段解析式,再利用定義域內(nèi)有0,可得f(0)=0;最后利用其為奇函數(shù)可求x∈(0,1]時對應(yīng)的解析式,綜合即可求函數(shù)f(x)的解析式;

(2)先求出f(x)在(0,1]上的導(dǎo)函數(shù),利用其導(dǎo)函數(shù)求出其在(0,1]上的單調(diào)性,進而求出其最大值,只須讓起最大值與1相比即可求出實數(shù)a的取值范圍

解:(1) ∵的圖象與的圖象關(guān)于y軸對稱,

的圖象上任意一點關(guān)于軸對稱的對稱點的圖象上.

當(dāng)時,,則.    2分

上的奇函數(shù),則.                  3分

當(dāng)時,,.    5分

                          6分

(2)由已知,

①若恒成立,則

此時,,上單調(diào)遞減,

的值域為矛盾.                             8分

②當(dāng)時,令,

∴ 當(dāng)時,,單調(diào)遞減,

當(dāng)時, ,單調(diào)遞增,

.              10分

,得

綜上所述,實數(shù)的取值范圍為.                               12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案