已知曲線C的方程為
x=8t2
y=8t
(t
為參數(shù)),過點F(2,0)作一條傾斜角為
π
4
的直線交曲線C于A、B兩點,則AB的長度為
 
分析:先根據(jù)曲線C的方程求得x和y的關(guān)系式,確定其軌跡為拋物線,求得焦點和準(zhǔn)線方程,根據(jù)題意可求得直線的方程代入拋物線得到一元二次方程,設(shè)出A,B點坐標(biāo),根據(jù)韋達定理求得x1+x2的值,進而根據(jù)拋物線的定義求得AB的長度.
解答:解:根據(jù)曲線C的方程可知
y2
64
=
x
8
,即y2=8x,
∴拋物線的焦點為(2,0),準(zhǔn)線方程為x=-2
依題意可知直線方程為y=x-2,代入拋物線方程得x2-12x+4=0,設(shè)A(x1,y1),B(x2,y2),
則x1+x2=12
根據(jù)拋物線定義可知|AB|=x1+x2+4=16
故答案為16
點評:本題主要考查了拋物線的參數(shù)方程.對于涉及拋物線的焦點弦的問題,常采用設(shè)而不求的方法,根據(jù)韋達定理和拋物線的定義求得問題的答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C參數(shù)方程為
x=2cosθ
y=sinθ
,θ∈[0,2π)
,極點O與原點重合,極軸與x軸的正半軸重合.圓T的極坐標(biāo)方程為ρ2+4ρcosθ+4=r2,曲線C與圓T交于點M與點N.
(Ⅰ)求曲線C的普通方程與圓T直角坐標(biāo)方程;
(Ⅱ)求
TM
TN
的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)一模)已知曲線C的方程為x2+ay2=1(a∈R).
(1)討論曲線C所表示的軌跡形狀;
(2)若a≠-1時,直線y=x-1與曲線C相交于兩點M,N,且|MN|=
2
,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的方程為kx2+(4-k)y2=k+1(k∈R).
(1)若曲線C是橢圓,求k的取值范圍;
(2)若曲線C是雙曲線,且有一條漸近線的傾斜角是60°,求此雙曲線的方程;
(3)滿足(2)的雙曲線上是否存在兩點P、Q關(guān)于直線l:y=x-1對稱,若存在,求出過P、Q的直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:海門市模擬 題型:填空題

已知曲線C的方程為
x=8t2
y=8t
(t
為參數(shù)),過點F(2,0)作一條傾斜角為
π
4
的直線交曲線C于A、B兩點,則AB的長度為______.

查看答案和解析>>

同步練習(xí)冊答案