已知向量
a
=(1,2sinx),
b
=(1,cosx-sinx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)y=f(x)的最小值以及取得最小值時(shí)x的值;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.
分析:計(jì)算向量的數(shù)量積,利用二倍角.兩角和的正弦函數(shù)化簡(jiǎn)函數(shù)f(x)的表達(dá)式,得到一個(gè)角的一個(gè)三角函數(shù)的形式;
(Ⅰ)借助正弦函數(shù)的最值,求出函數(shù)y=f(x)的最小值以,取得最小值時(shí)x的值;
(Ⅱ)借助正弦函數(shù)的單調(diào)增區(qū)間,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.
解答:解:f(x)=
a
b
=1+2sinx(cosx-sinx)(2分)
=1-2sin2x+2sinxcosx
=cos2x+sin2x(4分)
=
2
sin(2x+
π
4
)
(6分)
(Ⅰ)當(dāng)2x+
π
4
=2kπ-
π
2
,即x=kπ-
8
,k∈Z時(shí),函數(shù)y=f(x)取最小值,
函數(shù)y=f(x)的最小值是-
2
.(9分)
(Ⅱ)當(dāng)2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,即kπ-
8
≤x≤kπ+
π
8
,k∈Z時(shí),函數(shù)y=f(x)單調(diào)遞增,
故函數(shù)y=f(x)的單調(diào)遞增區(qū)間為[kπ-
8
,kπ+
π
8
]
(k∈Z).(12分)
點(diǎn)評(píng):本題考查三角函數(shù)的單調(diào)性,三角函數(shù)的最值,三角函數(shù)的化簡(jiǎn),公式的應(yīng)用,考查計(jì)算能力,基本知識(shí)的靈活運(yùn)應(yīng)能力,考查轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤
π
2
)

(1)若
AB
a
,且|
AB
|=
5
|
OA
|(O
為坐標(biāo)原點(diǎn)),求向量
OB
;
(2)若向量
AC
與向量
a
共線,當(dāng)k>4,且tsinθ取最大值4時(shí),求
OA
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(2,x)如果
a
b
所成的角為銳角,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,-2)且
a
b
,則實(shí)數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點(diǎn)P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個(gè)對(duì)稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實(shí)數(shù),且(
a
b
)∥
c
,則λ=2
⑤設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,則f(1)=-3
其中正確的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,4),若|
b
|=2|
a
|,則x的值為
±2
±2

查看答案和解析>>

同步練習(xí)冊(cè)答案